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Solving Feynman-Kac Forward–Backward SDEs
Using McKean-Markov Branched Sampling

Kelsey P. Hawkins , Ali Pakniyat , Member, IEEE, Evangelos Theodorou ,
and Panagiotis Tsiotras , Fellow, IEEE

Abstract—We propose a new method for the numerical
solution of the forward–backward stochastic differential
equations (FBSDE) appearing in the Feynman-Kac repre-
sentation of the value function in stochastic optimal con-
trol problems. Using Girsanov’s change of probability mea-
sures, it is demonstrated how a McKean-Markov branched
sampling method can be utilized for the forward integra-
tion pass, as long as the controlled drift term is appropri-
ately compensated in the backward integration pass. Sub-
sequently, a numerical approximation of the value function
is proposed by solving a series of function approximation
problems backwards in time along the edges of a space-
filling tree consisting of trajectory samples. Moreover, a
local entropy-weighted least squares Monte Carlo (LSMC)
method is developed to concentrate function approxima-
tion accuracy in regions most likely to be visited by opti-
mally controlled trajectories. The proposed methodology is
numerically demonstrated for linear and nonlinear stochas-
tic optimal control problems with nonquadratic running
costs, which reveal significant convergence improvements
over previous FBSDE-based numerical solution methods.

Index Terms—Least mean square methods, Monte Carlo
methods, nonlinear control systems, optimal control, par-
tial differential equations, stochastic processes, trajectory
optimization, tree graphs.

I. INTRODUCTION

THE Feynman-Kac representation theorem establishes the
intrinsic relationship between the solution of a broad class

of second-order parabolic and elliptic partial differential equa-
tions (PDEs) to the solution of forward–backward stochastic
differential equations (FBSDEs) (see, e.g., [1, Ch. 7]). Investi-
gations over these FBSDEs were brought to prominence in [2],
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[3], and [4], and they have been gaining traction as a frame-
work to solve stochastic nonlinear control problems, including
optimal control problems with quadratic cost [5], minimum-fuel
(L1-running cost) problems [6], differential games [7], [8], and
reachability problems [5], [9]. FBSDE-based numerical meth-
ods have also received interest from the mathematical finance
community [10], [11], [12]. This is due to the fact that the
Hamilton-Jacobi-Bellman (HJB) second-order PDE appearing
in stochastic optimal control (SOC) can be solved via FBSDE
methods with general nonlinear dynamics and costs. Although
initial results demonstrate promise in terms of flexibility and the-
oretical validity, numerical algorithms that leverage this theory
have not yet matured. For even modest problems, state-of-the-art
algorithms often have issues with slow and unstable convergence
to the optimal policy. Producing more robust numerical methods
is critical for the broader adoption of FBSDE methods for
real-world tasks.

FBSDE numerical solution methods broadly consist of two
steps, a forward pass, which generates Monte Carlo samples
of the forward stochastic process, and a backward pass, which
iteratively approximates the value function backwards in time.
Typically, FBSDE methods perform this approximation using
a least-squares Monte Carlo (LSMC) scheme, which implicitly
solves the backward SDE using parametric function approxi-
mation [11]. The approximate value function fit in the backward
pass is then used to improve sampling in an updated forward
pass, leading to an iterative algorithm that, ideally, improves
the approximation, till convergence. Although FBSDE methods
share a distinct similarity to differential dynamic programming
(DDP) techniques [13], [14], [15], as they also involve forward
and backward passes, the latter are, in general, less flexible.
For most DDP applications, a strictly positive definite running
cost with respect to the control is required for convergence [16,
Sec. 2.2.3]. Furthermore, in DDP the computation of first- and
second-order derivatives of both the dynamics and the cost
is necessary for the backward pass, making it challenging to
apply this approach to problems where these derivatives cannot
be computed analytically. In contrast, FBSDE techniques only
require a good model of the value function and the evaluation of
its gradient.

A key feature of FBSDE methods is their ability to generate a
parametric model for the value function over the entire time
horizon, which, in turn, can be used for the evaluation and
assessment of the performance of closed-loop control policies.
This feature differentiates both FBSDE and DDP methods from
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model predictive control (MPC) methods [17], which, in general,
only produce the current-best optimal control signal, reevaluated
at every time step [18].

FBSDE methods provide an alternative to grid-based methods
for solving PDEs, typically utilizing finite-difference, finite-
element, or level-set schemes, which are known to scale poorly
in high-dimensional state spaces (n ≥ 4). There is also ample
research into the development of meshless methods for solving
PDEs, such as radial basis function (RBF) collocation and RBF-
finite difference (RBF-FD) formulations [19]. FBSDE methods
share significant similarities with these methods, in the sense
that the value function is approximated by solving the PDE over
an unstructured set of collocation points. The primary drawback
of RBF methods is that they do not offer an efficient method for
choosing the collocation points, and since it is difficult to know
a priori what the best points are, point selection might regress
into a grid-based method. Specifically, sufficiently broad and
dense sampling of a high-dimensional state space might require
roughly the same number of collocation points as a grid-based
method to be well-conditioned and to produce a quality estimate
of the value function [20].

While Feynman-Kac-based FBSDE methods produce an
unbiased estimator for the value function associated with
HJB equations, a naïve application of the theory leads to es-
timators with high variance by producing sample trajectories
away from the optimal one. Recent work has shown that Gir-
sanov’s change of probability measures can be employed to
make changes to the sampling in the forward pass without adding
intrinsic bias to the estimator [5], [6], and [8]. In other words,
the drift appearing in the forward SDE as a consequence of the
change in the probability measure can be employed to modify the
sampling in the forward pass; this, in turn, requires appropriate
accommodation for the change of measure and the associated
conditional expectations in the backward pass.

In this work, we expand upon the above ideas and invoke Gir-
sanov’s theorem for Feynman-Kac FBSDEs in a broader setting
than that of [5], [6], and [8], and show that the forward sampling
measure can be modified at will; this enables us to incorporate
methods from other domains, namely, rapidly-exploring random
trees (RRTs) (see, e.g., [21] and the recent survey in [22]), in or-
der to more efficiently explore the state space during the forward
pass. RRTs are frequently applied to reachability-type motion
planning problems, by biasing the samples toward regions of
the state space that have low density. Using RRTs in the forward
sampling allows us to spread samples evenly over the reachable
state space, increasing the likelihood that near-optimal samples
are well-represented in the forward pass sample distribution.
By sampling more efficiently and relying less on incremental
approximations of the value function to guide our search, we
can achieve faster and more robust convergence than previous
FBSDE methods. In the backward pass, we take advantage of
the path-integrated running costs and the estimates of the value
function to produce a heuristic that weighs paths according to a
local-entropy measure-theoretic optimization. Although local-
entropy path integral theory and RRTs have been used together
in [23], the method of this article is more closely related to the
path-integral approach to control [14]. Our method, similarly,

performs forward passes to broadly sample the state space, but,
in contrast to [23], it follows each forward pass with a backward
pass to obtain an approximation of the value function, and,
consequently, obtain a closed-loop policy over the full horizon.

The primary contributions of this article are as follows.
1) Provide the theoretical basis for the use of McKean-

Markov branched sampling in the forward pass of FBSDE
techniques.

2) Introduce an RRT-inspired algorithm for sampling the
forward SDE.

3) Present a technique for concentrating value function ap-
proximation accuracy in regions containing optimal tra-
jectories.

4) Propose an iterative numerical method for the purpose of
approximating the optimal value function and its policy.

This article expands upon the authors’ prior work in [24],
by: first, providing missing proofs and adding the details for
proving all stated theorems; second, providing a comprehensive
discussion of the proposed algorithm; and third, by providing ad-
ditional examples that further illustrate the theory and motivate
the design choices of the proposed algorithm.

The rest of this article is organized as follows. Section II
presents the SOC problem formulation, the on-policy value
function representation, and the associated family of Hamilton-
Jacobi equations. Next, Section III introduces a constructive
series of alternative representations of the value function, first
as the solution of “on-policy” FBSDEs which arise from the
Feynman-Kac theorem, then as the solution of “off-policy” FBS-
DEs which arise from the application of Girsanov’s theorem, and
finally as the minimizer of a local-entropy weighted optimization
problem over the off-policy FBSDE distribution. Section IV
discusses branched forward SDE sampling and its novel in-
terpretation as a discrete approximation of the continuous-time
theory of Section III. In Section V, we propose the method of
forward–backward rapidly exploring random trees for solving
SDEs (FBRRT-SDE), a particular implementation of the rep-
resentation introduced in Section IV. In Section VI, we apply
FBRRT-SDE to three problems and demonstrate its ability to
solve nonlinear SOC problems with nonquadratic running costs.
Finally, Section VII concludes this article.

II. HAMILTON-JACOBI EQUATION AND ON-POLICY VALUE

FUNCTION

In this section, we briefly introduce the SOC problem under
consideration and its associated optimal value function, as well
as the on-policy value function and its associated Hamilton-
Jacobi PDE. Given an initial time t ∈ [0, T ] and a complete
filtered probability space (Ω,F , {Fs}s∈[t,T ],P) on which then-
dimensional standard Brownian (Wiener) processWs is defined,
consider a stochastic system with dynamics governed by

dXs = f(s,Xs, us) ds+ σ(s,Xs) dWs, Xt = xt (1)

over the interval [t, T ], whereXs is an Rn-valued, progressively
measurable state process on the interval s ∈ [t, T ], u[t,T ] is a
progressively measurable input process on the same interval
taking values in the compact setU ⊆ Rm, andf : [0, T ]×Rn ×
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U → Rn, σ : [0, T ]×Rn → Rn×n are the Markovian drift and
diffusion functions, respectively.

For each t ∈ [0, T ], the cost over the time interval [t, T ]
associated with a given control signal u[t,T ] is

St[xt, u[t,T ]] :=

∫ T

t

�(s,Xs, us) ds+ g(XT ) (2)

where � : [0, T ]×Rn × U → R+ is the running cost, and g :
Rn → R+ is the terminal cost. The SOC problem is to de-
termine, given (f, σ, �, g, T ), the optimal value function V ∗ :
[0, T ]×Rn → R+, defined as

V ∗(t, x) = inf
u[t,T ]∈U[t,T ]

E
[
St[x, u[t,T ]]

]
) (SOC)

where U[t,T ] is a set of admissible control processes satisfying
the conditions described in the beginning of [1, Ch. 4, Sec. 3].
Among these conditions, u[t,T ] must be progressively measur-
able, the SDE (1) must admit a unique solution Xs under the
control u[t,T ], and f(·, X(·), u(·)) must be L1 integrable.

Consider the HJB PDE

∂tV
∗ +

1

2
tr[σσ�∂xxV ∗] + h∗(t, x, ∂xV ∗) = 0

V ∗(T, x) = g(x) (HJB)

where

h∗(t, x, p) := min
u∈U
{�(t, x, u) + p�f(t, x, u)} (3)

and where ∂tV ∗ is the partial derivative with respect to t, ∂xV ∗

is the gradient with respect to state x, and ∂xxV ∗ is the Hessian
with respect to state x.

Assumption 1: The following conditions hold for the problem
data.

1) f, σ, �, g are uniformly continuous, Lipschitz in x, for all
(t, u) ∈ [0, T ]× U .

2) σ has sublinear growth in x and g has polynomial growth
in x.

3) σ−1 exists and is bounded.
Under Assumption 1, there exists a unique weak solution Xs

to (1) under each admissible control process us, there exists a
unique viscosity solution V ∗ to (HJB), and the viscosity solution
V ∗ has the representation (SOC) [1, Ch. 7, Th. 4.4].

In addition to the optimal value function V ∗, we also seek
to find an optimal feedback control policy π∗. According to [1,
Ch. 5, Definition 6.1], we define an admissible feedback control
policy π : [0, T ]×Rn → U as a measurable function for which
the SDE

dXs = f(s,Xs, π(s,Xs)) ds+ σ(s,Xs) dWs, Xt = x
(4)

has a weak solution. Due to the boundedness of σ−1, there
exists an optimal feedback control policyπ∗ with the verification
property that V ∗(t, x) = E[St[x, π

∗] ] [1, Ch. 5, Th. 6.6].
Remark II.1: Assuming the functions f , �, σ are continuous

and bounded along with their first partials in t and first and
second partials in x, U is compact, and g is thrice continuously
differential and bounded, Theorems 4.2 and 4.4 of [25, Ch. 4]
yield that the PDE (HJB) admits a classical solution V ∗. That is,

V ∗ is continuously differentiable in t, and twice continuously
differentiable in x, and the optimal feedback control policy
satisfies

π∗(s, x) ∈ arg min
u∈U

{�(s, x, u) + (∂xV
∗)�f(s, x, u)}. (5)

In this article, instead of a direct solution of (HJB), we work
with a class of arbitrary control policies μ and their associated
“on-policy” value functions V μ, and we use iterative methods
to approximate V ∗ and π∗. We allow more general policies of
the form μ : [0, T ]×Rn ×Rn → U .

The Hamilton-Jacobi (HJ) PDE for the on-policy value func-
tion corresponding to the policy μ is given by

∂tV
μ +

1

2
tr[σσ�∂xxV μ] + hμ(t, x, σ�∂xV μ) = 0

V μ(T, x) = g(x) (HJ)

where

hμ(t, x; z)

:= �(t, x, μ(t, x; z)) + z�σ−1(t, x)f(t, x, μ(t, x; z)). (6)

Assumption 2: The function μ is selected such that hμ in (6)
is uniformly continuous in (t, x) and Lipschitz in z.

Under Assumptions 1–2, (HJ) admits a unique viscosity solu-
tion [1, Ch. 7, Th. 4.1]. When the control policy is chosen as the
optimal policy μ = π∗, by comparing (6) and (3), we confirm
that (HJ) coincides with (HJB), and therefore the on-policy value
function corresponding to the optimal policy V π

∗
is indeed an

optimal value function.

III. FEYNMAN-KAC-GIRSANOV FBSDE REPRESENTATION

A. Off-Policy Drifted FBSDEs

In language originating from reinforcement learning, an “on-
policy” method learns a value function V μ from trajectory
samples generated by following the same policy μ, whereas
“off-policy” methods learn from trajectory samples generated
by following a different policy [26]. Off-policy methods are
generally more desirable because by disentangling the sampling
distribution from the target value function being learned, we
allow for broader exploration and thus more rapid convergence to
the optimal value function. Following this language, in stochas-
tic control, an “on-policy” method would sample from the FSDE
(4) with drift fμ(s,Xs) := f(s,Xs, μ(s,Xs;Zs)) to learn V μ,
but an “off-policy” method would sample from a different FSDE
to learn V μ. In this section, we present an off-policy stochastic
control method for representing V μ. The on-policy version of
the theory then arises naturally from a particular specialization.

The off-policy method utilizes the connection between the so-
lution of a pair of FBSDEs and the on-policy value function V μ

solving (HJ). We first introduce a class of off-policy FBSDEs,
and then provide a theorem establishing their connection to V μ.
We call this class of FBSDEs off-policy because the drift term
of the FSDE is a random process that can be chosen at will.

As before, let (Ω,F , {Ft}t∈[0,T ],P) be a complete, filtered
probability space, and let WP

s be a Brownian process in the
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measure P. Denote fμs := fμ(s,Xs), and similarly for �μs , σs,
and let EP refer to the expectation taken in the probability
measure P. Further, let Ks be an arbitrary Fs-progressively
measurable process such that σ−1s Ks satisfies Novikov’s cri-

terion (EP

[
exp

(
1
2

∫ T
0 ‖σ−1s Ks‖2 ds

)]
<∞) [27, Lemma 9].

We call the pair of FBSDEs

dXs = Ks ds+ σs dW
P
s , Xt = x (7)

dYs = −(�μs + Z�s Ds) ds+ Z�s dW
P
s , YT = g(XT ) (8)

where

Ds := σ−1s (fμs −Ks) (9)

the off-policy drifted FBSDEs for the target policy μ and drift
process Ks. A solution to (7)–(8) is the triple of Fs-adapted
processes (Xs, Ys, Zs) for whichXs satisfies the FSDE (7) and
Ys, Zs satisfy the BSDE (8).

Theorem 3.1: Let Assumptions 1–2 hold, and let V μ be the
unique viscosity solution of (HJ). Assume Ks is chosen such
that (7) admits a unique square-integrable solution Xs (i.e., it
satisfies the properties of [1, Ch. 1, Th. 6.16]), σ−1s Ks satisfies
Novikov’s criterion, and Ds is bounded. Then, there exists a
solution (Ys, Zs) to the BSDE (8), and it holds that

Ys = V μ(s,Xs), s ∈ [t, T ] (10)

Zs = σ�s G(s,Xs), a.e. s ∈ [t, T ] (11)

for some functionG : [0, T ]×Rn → Rn, P-a.s., and, in partic-
ular

Yt = EP[Ŷt,τ ] = V μ(t, x), P-a.s. (12)

where

Ŷt,τ := Yτ +

∫ τ

t

(�μs + Z�s Ds) ds. (13)

Whenever ∂xV μ exists, then G(x,Xs) = ∂xV
μ(s,Xs), and

hence

Zs = σ�s ∂xV
μ(s,Xs), a.e. s ∈ [t, T ]. (14)

�
Proof: Since (7) has a square-integrable solution, by As-

sumption 1 on g, the BSDE terminal condition YT = g(XT ) is
square-integrable. By [1, Ch. 7, Th. 3.2] and because �μs + z�Ds

is Lipschitz in y, z, then there exists a solution (Ys, Zs) to (8)
which is unique and square-integrable. Girsanov’s theorem (see,
e.g. [27, Th. 10]) indicates that if we construct the measure Q
from P via the Radon-Nikodym derivative

dQ = Θ
Q|P
t,T dP (15)

where

Θ
Q|P
t,t′ :=exp

(
− 1

2

∫ t′

t

‖σ−1s Ks‖2 ds−
∫ t′

t

(σ−1s Ks)
�dWP

s

)
(16)

then the process

WQ
t′ :=WP

t′ +

∫ t′

t

σ−1s Ks ds (17)

is Brownian in the newly constructed measure Q. A further
consequence of Girsanov’s theorem (see e.g., [28, Ch. 5, Th.
10.1]) is illustrated, through an abuse of notation, by substituting
the relationship dWP

s = dWQ
s − σ−1s Ks ds into (7) and (8).

Performing this substitution yields that the solution (Xs, Ys, Zs)
to (7) and (8) with the P-Brownian process WP

s also solves the
zero-drift FBSDE

dXs = σs dW
Q
s , Xt = x (18)

dYs = −(�μs + Z�s σ
−1
s fμs ) ds+ Z�s dWQ

s , YT = g(XT )
(19)

with Q-Brownian WQ
s .

Under Assumptions 1–2, it follows from [1, Ch. 7, Th. 4.5]
that there exists a unique solution (X̃s, Ỹs, Z̃s) to the FBSDE

dX̃s = σs dW
Q
s , X̃t = x (20)

dỸs = −hμ(s, X̃s, Z̃s) ds+ Z̃�s dWQ
s , ỸT = g(X̃T ).

(21)

and Ỹs = V μ(s, X̃s) holds Q-a.s., and, in particular, Ỹt =
V μ(t, x). That Z̃s = σ�s G(s, X̃s) holds Q-a.s. for the viscosity
solution V μ follows from [4, Th. 4.1]. Similarly, that Z̃s =
σ�s ∂xV

μ(s, X̃s) holds for a classical solution follows from [4,
Prop. 4.3]. It is easy to see that

hμ(s, X̃s, Z̃s) = �μs + Z̃�s σ
−1
s fμs (22)

and from the uniqueness of solutions [1, Ch. 1, Definition 6.6;
Ch. 7, Definition 2.1], it follows that (Xs, Ys, Zs) also solves
(20)–(21), and thus Ys = V μ(s,Xs), Zs = σ�s ∂xV

μ(s,Xs) ≡
σ�s G(x,Xs) hold Q-a.s.

A further consequence of Girsanov’s theorem is that P and Q
are equivalent measures [27], that is, P(N) = 0 iff Q(N) = 0
forN ∈ F . Thus the previous statements said to holdQ-a.s. also
hold P-a.s.

To show (12), note that from (13) and the definition of the Itô
integral [1, p. 33, eq. (5.23)], we have

Ŷt,τ = Yt −
∫ τ

t

Z�s dW
Q
s .

Taking the conditional expectation of both sides, and by noting
that by a basic property of the Itô integral [1, p. 34, eq. (5.26)]

EP

[ ∫ τ

t

Z�s dW
P
s

]
= 0

we have EP[Ŷt,τ ] = EP[Yt] = EP[V
μ(t, x)] = V μ(t, x). �

Note that while Z = σ�∂xV μ cannot be guaranteed for all
viscosity solutions of (HJ) (see the discussion in [4, pp. 46–47]),
it does hold for smooth convergent approximations of V μ (see,
for example, the proof of Theorem 4.5 in [1, Ch. 7]). Thus, for
the numerical approximations generated in this work, we will
assume that this equality holds.

Example 1: Consider the optimal control of the scalar linear
system

dXs = (Xs + us) ds+
1

5
dWs
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whose value function is defined as the solution of

V ∗(t, x) = inf
u[t,T ]

E

[
1

2
(XT )

2 +

∫ T

t

1

2
u2s ds

]
.

It can be verified that the value function is analytically expressed
as

V ∗(t, x) = αtx
2 + βt

where

α(t) := (e−2(1−t) + 1)−1

β(t) :=
1

50

(
log

(
1

2
+

1

2
e2(1−t)

)
+ 2(1− t)

)
with corresponding optimal policy π∗(t, x) = −2αtx. For this
example, let the target policy be the optimal policy μ = π∗,
which can be computed analytically. For any adapted process
Ks, the associated drifted FBSDE is

dXs = Ks ds+
1

5
dWP

s

dYs = −
(
1

2
μ2
s + 5(Xs + μs)− 5ZsKs

)
ds+ Zs dW

P
s

with boundary conditions

X0 = x0, YT =
1

2
(XT )

2

where we choose x0 = 1. We also have Zt = (2/5)αtXt. The
correspondence between the value function and the solutions
to the above FBSDE for three different choices of Ks, are
illustrated in Fig. 1 . The drift term in (c) generates a distribution
forXs, which matches the system guided by the optimal control
policy.

Regardless of the drift value chosen, the process [Xs Ys]
�

lies on the surface characterized by the function V ∗. Since, in
general, function approximation has higher accuracy when inter-
polating in a region of dense samples compared to extrapolating
in a region with no samples, the case in Fig. 1(c) is more desirable
from an optimal control perspective, compared to Fig. 1(a) and
(b), since the samples have a correspondence with the optimal
trajectories.

However, as illustrated in Fig. 2, there are other selections for
the sampling policy outperforming the optimal control policy,
yielding better function approximation. In this example, the
function approximation at t = 0.5, is illustrated on the right-
hand side of Fig. 2. In particular, Fig. 2(b) illustrates that such a
randomized optimal policy explores a larger region compared to
a pure implementation of the optimal drift in Fig. 2(a), thus re-
sulting in a more accurate approximation of the value function. In
other words, a broader exploration of the state space contributes
to better function approximations in the presence of numerical
error that builds from recursive function approximation during
the backward pass. �

Example 1 and Fig. 1 illustrate the link between the drifted
FBSDE and the value function. We can interpret this result in
the following sense. We can pick an arbitrary process Ks to be
the drift term, which generates a distribution for the forward
process Xs in the corresponding measure P. The BSDE yields

Fig. 1. Surface of the optimal value function for Example 1. Fifty sam-
ple paths of drifted forward–backward SDEs (7) and (8) are com-
pared with different drifts. The initial condition is chosen as x0 = 1.
(a) Ks = Xs (= fπ

s with π ≡ 0). (b) Ks = 3
5Xs (= fπ

s with π = − 2
5Xs).

(c) Ks = fπ∗
s (Optimal policy guided dynamics).

an expression for Yt using the same process WP
s used in the

FSDE. The term Z�s Ds acts as a correction in the BSDE to
compensate for changing the drift of the FSDE. We can then use
the relationship (12) to solve for the value function V μ, whose
conditional expectation can be evaluated in P.
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Fig. 2. Implementation of the drift corresponding to (a) optimal input,
and (b) optimal input with 10% randomization, for the same system as
in Example 1. (a) Ks = fπ∗

s , the same case as in Fig. 1(c). (b) Ks ={
f(Xs,π∗(Xs)),
f(Xs,−30),
f(Xs,30),

w.p. 0.8,
w.p. 0.1,
w.p. 0.1.

.

It should be noted thatKs need not be a deterministic function
of the random variable Xs, as is the case with fμs . For instance,
it can be selected as Ks(ω) = κ(s,Xs(ω), ω) for some appro-
priate function κ, producing a nontrivial joint distribution for
the random variables (Xt,Kt).

A remarkable feature of the off-policy FBSDE formulation is
that the forward pass is decoupled from the backward pass, that
is, the evolution of the forward SDE does not explicitly depend
on Ys or Zs (whereas in the stochastic maximum principle for-
mulations (see, e.g., [1, Ch. 3]), the decoupling is irremovable).
This feature forms the basis of FBSDE numerical investigations
of SOC [5], [29]. The significant difference of Theorem 3.1
in comparison to those results is that the focus here is shifted
from the solution of (HJB) toward the broader class of functions
satisfying the (HJ). This provides a stronger case for policy
iteration methodologies, because the theory does not require, or
expect, μ to be an optimal policy, as is in [5] and [29]. Although

not evaluated in this work, μ can be chosen according to design
specifications other than estimating the optimal policy, such as,
for instance, to ensure that the current policy is close to the
previously estimated policy.

B. Local Entropy Weighing

As discussed in Section III-A, the disentanglement of the
forward sampling from the backward function approximation
provides the opportunity to employ broad sampling schemes
to cover the state space with potential paths. However, fitting
a value function broadly to a wide support distribution might
degrade the quality of the function approximation since high
accuracy of function approximation is more crucial in those
parts of the state space that are in proximity to the optimal
trajectories. Once forward sampling has been performed and
some parts of the value function have been approximated, we
can apply a heuristic in which sample paths closer to optimal tra-
jectories are weighted more so as to concentrate value function
approximation accuracy in those regions.

To this end, we propose using a bounded random variable ρt
to produce a new measure Rt, the weighted counterpart to Pt,
defined as

dQt = Θ
Q|P
0,t dPt. (23)

In order to avoid underdetermination of the regression by con-
centrating to a single or a few samples, we select Rt as

Rt ∈ arg min
Rt

{ERt
[ρt] + λH(Rt‖Pt)} (24)

with λ > 0, a tuning variable, and

H(Rt‖Pt) = ERt

[
log

(
dRt
dPt

)]
(25)

is the relative entropy of Rt that takes its minimum value when
Rt = Pt, the distribution in which all sampled paths have equal
weight.

The minimizer of (24), which balances between the value of
ρt and the relative entropy of its induced measure, has a solution
R∗t , given by [30, p. 2]

dR∗t = Θ
R|P
t dPt, Θ

R|P
t :=

exp
(− 1

λ
ρt
)

EPt

[
exp

(− 1
λ
ρt
)] . (26)

Henceforth, for simplicity, we letRt refer to this minimizerR∗t .
During numerical approximation we can interpret the weights
as a softmin operation over paths according to this heuristic, a
method often used in the deep learning literature [31].

Theorem 3.2: Assume ρτ is selected such thatWP
s is Brown-

ian on the interval [t, τ ] with respect to the induced measure Rτ .
It then holds that

Yt = ERτ
[Ŷt,τ |Xt] = V μ(t,Xt), Rτ -a.s. (27)

where Ŷt,τ is defined in (13). Furthermore, the minimizer φ∗ of
the optimization problem

inf
φ∈L2

ERτ
[(Ŷt,τ − φ(Xt))

2]

= inf
φ∈L2

EPτ
[ΘR|P
τ (Ŷt,τ − φ(Xt))

2] (28)
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overXt-measurable square integrable variablesφ(Xt) coincides
with the value function φ∗(Xt) = V μ(t,Xt). �

Proof: First, note that Xs, Ys, Zs, WP
s , and Ŷt,τ are Fτ -

measurable for s, t ∈ [0, τ ]. Thus, (10) and

Ŷt,τ = Yt −
∫ τ

t

Z�s dW
P
s (29)

hold Pτ -a.s. We now show that they hold Rτ -a.s. as well. Since
EPτ

[Θ
R|P
τ ] = 1 and Pτ is a probability measure, then Rτ is also

a probability measure. Furthermore, since ρτ is bounded, Θτ >
0 Pτ -a.s. It follows that Rτ and Pτ are equivalent measures
because they reciprocally have strictly positive densities [32,
Ch. 10, Remark 10.4]. The proof of Theorem 3.1 shows that
since these measures are equivalent, (10) and (29) hold Pτ -a.s.
if and only if they also hold Rτ -a.s. Since WP

s is Brownian
in Rτ over the integral, the second term in the right hand side
of (29) will drop out when taking the conditional expectation
ERτ

[Ŷt,τ |Xt], yielding (27).
Equation (28) is a result of the L2-projective properties of

conditional expectation [33, Ch. 10.3, Property 11] applied to
(27), followed by a change of measure applied to the expected
value integration with (26). �

In the following section, we approximate the minimization
of the right-hand side of (28) over parameterized value function
models to obtain an estimate of the value function.

To summarize, in this section, we introduced three measures:
1)Q, the measure associated with the target policyμ for the value
function V μ; 2) P, the sampling measure used in the forward
pass to explore the state space; and 3) Rτ , the local-entropy
weighted measure used in the backward pass to control function
approximation accuracy.

IV. BRANCHING PATH LSMC

In the previous section, we provided the theoretical results jus-
tifying our approach for the case of continuous-time stochastic
processes. In this section, we discuss how each of these measures
is represented numerically. In particular, we propose a novel
discrete-time, finite-dimensional numerical scheme to produce
the FSDE distribution, along with a procedure to solve for the
value function in a backward pass using the BSDE. The FSDE
distribution is represented as a branching-path tree and the BSDE
is used to produce estimators, stepping backwards along each of
the branching paths, to estimate the value function parameters
using LSMC regression. In Section V, we propose particular
choices for the drift process and the heuristic weight function
used in the proposed FBRRT-SDE numerical method.

Henceforth, we assume a discrete-time partition of the interval
[0, T ](t0 = 0, . . . , ti = (Δt)i, . . . , tN = T ) for some partition
length Δt. For brevity, we abbreviate Xti as Xi and similarly
for most other variables.

Fig. 3 motivates our approach, illustrating how the method
is able to rapidly find the optimal distribution. An on-policy
method assumes knowledge of an initial suboptimal control
policy, sampled as in Fig. 3(b) using the approach in [6] and
the suboptimal value function is solved in that distribution. The
on-policy method requires iterative improvement of the policy to

Fig. 3. Heatmap of different measure distributions for a 1-D SOC
problem, illustrating how RRT-sampling and local-entropy weighing can
accelerate discovery of the optimal distribution. (a) Optimal distribution.
(b) Parallel-sampled suboptimal. (c) RRT-sampled (P). (d) RRT-sampled,
weighted (R).

produce a distribution that overlaps with the optimal distribution.
However, if we begin with a sampling measure that broadly
explores the state space as in Fig. 3(c), we can produce an
informed heuristic that weighs this distribution as in Fig. 3(d), so
that the function approximation is concentrated in a near-optimal
distribution. Thus, often, we need only one iteration to get a good
approximation of the optimal value function and policy.

In Section IV-A, we summarize the construction of a stochasti-
cally sampled tree as a generalized data structure to approximate
the FSDE distribution over the partition t0, t1, . . . , tN . Then,
in Section IV-B, we demonstrate how this data structure can
be interpreted as a series of McKean-Markov path measures
{−→P i}Ni=0 to approximate the forward sampling distributions.
Finally, in Section IV-C, we discuss how these measures can
be used in the backward pass to approximate the BSDE solution
by estimating the optimal value function.

A. Forward SDE Branched Sampling

We begin by discussing the construction of a tree data structure
G representing the FSDE (7). In this section, we only describe
how edges of G are added and what data are stored. Later, in
Section V-A, we propose a specific methodology for selecting
nodes for expansion and choosing the drift value. The tree
is initialized with a root node at the initial state x0 and is
constructed asynchronously as long as new nodes and directed
edges are added using the following procedure.

Let xparent
i ∈ Rn be a state node in the tree at time i se-

lected for expansion, as the parent of a new edge. The drift
ki ∼ κ(xparent

i , {xki }k) (representing the random variable Ki) is
sampled from some random function κ, which can depend on
both the state and the distribution of the nodes at that time.
Independently, the noise is sampled wi ∼ N (0,ΔtIn). The
child state node is computed using an Euler-Maruyama SDE
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Fig. 4. (a) and (b) Illustration of how the branch sampled measures
are represented based on the underlying data structure. The colored
paths show the collection of paths representing the respective measure.
Dotted lines represent edges in the data structure which are not included
in the path measure for that time step. (c) and (d) Comparison of the
unweighted parallel-sampling method from previous approaches to the
proposed weighted and branch-sampled method. (a) Branch-sampled
(
−→
P i). (b) Branch-sampled (

−→
P i+1). (c) Parallel-sampled. (d) Weighted-

branched (
←−
R i+1).

step approximation of the FSDE (7)

xchild
i+1 = xparent

i + kiΔt+ σ(ti, x
parent
i )wi. (30)

The edge (xparent
i , ddata

i , xchild
i+1 ) is added to the tree, where ddata

i =
(ki, wi, . . .) is the data attached to the edge. A new parent can
then be selected for expansion, including selecting the same
parent again. Fig. 4(a) and (b) illustrates the branching tree data
structure.

B. McKean-Markov Measure Representation

We approximate the continuous-time sampling distributions
with discrete-time McKean-Markov branch sampled paths, as
in [34]. The tree data structure G represents a series of path
measures {−→P i}Ni=0, each approximating the distribution

−→
P i ≈

Pti ◦ ξ−1i , where ξi is the discrete-time random path defined as
ξi := (X0,D0, X1, . . . ,Di−1, Xi), and ξ−1i is the inverse map
from events on the path space to events on the sample space
Ω [33, Ch. 3]. Here, we use Di to refer to the set of random
variables associated with the edges of the tree, includingKi and
WP
i . The empirical measure approximations are defined as

−→
P i :=

1

M

M∑
j=1

δξji
(31)

Fig. 5. Comparison of the approximations of the joint distribution
P(Xi,Ki)

. Left: A parallel-sampling method is used to approximate a
joint distribution wherein Ki is a deterministic function of Xi. Right:
A branch-sampling method is used to approximate a nontrivial joint
distribution. The blue dots are the approximation of the distribution PXi

,
the green curves are the ideal continuous distribution P(Xi,Ki)

, the red
dots are its sampled approximation and the yellow dots represent how
many children that node in the tree will have.

where δ is the Dirac-delta measure acting on sample paths

ξji := (xj0,i, d
j
0,i, x

j
1,i, d

j
1,i, . . . , d

j
i−1,i, x

j
i,i). (32)

The notation xjm,i indicates that this element is the sample of a

random variable Xm that is the ancestor of sample xji,i in the

path ξji , and similarly for the edge variables Dm. Each node
in the tree xji (alternatively called a particle) is associated with
a unique path ξji whose final term is xji,i = xji . Fig. 4(a)–(b)
illustrates how each colored node at a particular time step is
associated with its matching colored path, and that all of these
paths collectively constitute the path measure.

It is worth noting that in this construction there is no re-
quirement for

−→
P i and

−→
P i+1 to agree over the interval [0, ti].

This property is illustrated by the fact that, for example, the
path ending at x3i in Fig. 4(a) is represented in

−→
P i but not

represented in
−→
P i+1 in Fig. 4(b). To see why such constructions

are permissible in the proposed numerical scheme, notice that in
the backward step (e.g., in Theorems 3.1 and 3.2) the measure
Pi is only employed to compute the instantaneous conditional
expectation; thus, there is no sample path matching required
when taking τ = ti+1 and t = ti to obtain V μ(ti, x), and when
taking τ = ti and t = ti−1 to obtain V μ(ti−1, x).

It is observed in Fig. 4(b) that some edges are multiply
represented in the distribution. If the drift termKi were restricted
to be a deterministic function of Xi (as is the case in [5],
[6], and [8]), such a construction would represent an unfaithful
characterization of the path distribution because samples of the
Brownian process are independent, and thus should be sampled
as in Fig. 4(c). However, since Ki itself is permitted to have
a distribution, the overlapping of paths is justified as the drift
having been selected so as to concentrate the paths in a certain
part of the state space. Fig. 5 illustrates why parallel sampling
is naturally suited for representing deterministic functions and
why branch sampling is necessary for representing nontrivial
joint distributions (Xi,Ki).
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For any arbitrary function Gi evaluated on path ξi, we have
the almost sure convergence

E−→
P i
[Gi(ξi)] =

M∑
j=1

1

M
Gi(ξ

j
i )

a.s.−→ E
˜Pi
[Gi(ξi)] (33)

as the number of particles M →∞, where P̃i is the ideal
discrete-time approximation of the distribution Pi ◦ ξ−1i under
the Euler-Maruyama scheme [34, Sec. 4.1.2]. It follows from
the change of variables theorem [35, Ch. 3, Th. 3.6.1] that this
expectation is exact up to the error due to time discretization

E
˜Pi
[Gi(ξi)] ≈

∫
Gi(ξi)Pi ◦ ξ−1i (dξi)

=

∫
Gi(ξi(ω))Pi(dω) =: EPi

[Gi(ξi)].

According to [36, Ch. 10, Th. 10.2.2], when a linear growth
condition in x is imposed on fμs , σs, and �μs along with a few
other conditions, the Euler-Maruyama scheme’s error varies as
O((Δt) 1

2 ). When σs is constant with respect to x, the error
bound improves to O(Δt) [36, Ch. 10, Th. 10.3.5]. Thus, our
approximation converges with large numbers of particles and a
decreasing time interval.

C. Path Integral Least Squares Monte Carlo

To approximate the measure Ri+1 in Theorem 3.2 we use a
path integral-weighted measure

←−
R i+1 :=

1

η

M∑
j=1

Θji+1δξji+1
(34)

where the weights for each heuristic value ρji+1 are

Θji+1 = exp

(
−1

λ
ρji+1

)
(35)

and η is a normalizing constant. The heuristic value is calculated
as ρji+1 = ρi+1(ξ

j
i+1), taking care to exclude wji,i+1 so that its

distribution remains Brownian.
In each step of the backward pass, we use

←−
R i+1 and the

value function approximation V (x;αi+1) ≈ V μ(ti+1, x), pa-
rameterized by αi+1 ∈ A, where A is the parameter space, to
estimate the value function at the previous time step V (x;αi) ≈
V μ(ti, x), by producing αi ∈ A. We assume that the parame-
terization V (x;α) results in a function that is C2 for all α ∈ A,
and approximate the optimization in (28) as

α∗i = arg min
αi∈A

E←−
R i+1

[(Ŷi,i+1 − V (Xi;αi))
2]

= arg min
αi∈A

E−→
P i+1

[Θji+1(Ŷi,i+1 − V (Xi;αi))
2]

= arg min
αi∈A

1

η

M∑
k=1

Θji+1(ŷ
j
i,i+1 − V (xji ;αi))

2 (36)

where (13) is approximated as

ŷji,i+1 ≈ V (xji+1;αi+1) + (�μji + zj�i+1d
j
i )Δt. (37)

Algorithm 1: Forward–Backward RRT-SDE.
1: procedure FBRRT-SDE(x0)
2: G̃.init(ξ0)
3: for k = 1, . . . , Niter do
4: G ← FORWARDPASS (G̃, (αi)i)

� Generate tree which represents {−→P i}i
5: (αi)i ← BACKWARDPASS (G)

� Approximate value functions {V (·;αi)}i
6: Jk ← POLICYCOST (x0, (αi)i)

� Evaluate computed policy {μi(·;αi+1)}i
7: G̃ ← ERODE (G, (αi)i)

� Prune tree to remove suboptimal paths
8: end for
9: return (αi)i

10: end procedure

The novelty of this method over classic LSMC [11], developed
for parallel-sampled paths comes from: 1) the observation that
introducing the drift process Ki with a nontrivial joint distri-
bution P(Xi,Ki) validates the choice of branch-sampled path
distributions; 2) we can weigh regression points using a heuristic
that acts on the entire path, not just the immediate states; and
3) weighing as in (35) has a particular interpretation as the
selection of a measure with desirable properties for robustness
using (24).

V. FORWARD–BACKWARD RRT-SDE

In this section, we present a novel algorithm (FBRRT-SDE)
that uses rapidly exploring random trees to construct the graph
G of samples for solving the corresponding system of FBSDEs.
The FBRRT-SDE algorithm is a particular numerical application
of the generalized theory presented in Section IV. The ultimate
goal of the FBRRT-SDE algorithm is to produce the set of param-
eters {αi}Ni=1 which approximate the optimal value function as
V ∗(ti, x) ≈ V (x;αi). This is achieved by generating a forward
pass to produce a graph representation G of the path measures
{−→P i}Ni=1. Given that the optimal policy has the form (5), we
define the target policy

μi(x;αi+1)

= arg min
u∈U

{�(ti, x, u) + f(ti, x, u)
�∂xV (x;αi+1)} (38)

so that it coincides with the optimal control policy when the
value function approximation is exact. The backward pass uses
G, μi, and ρi+1 to produce αi, backwards in time. At each
iteration k of the algorithm, the policy cost Jk := E[S0[x0, μ]]
associated with a set of parameterized policies is evaluated by
sampling a parallel-sampled set of trajectories and computing
the mean cost. At the end of each iteration, nodes with a
high heuristic value ρi+1 are pruned from the tree G, and new
nodes are added in the forward pass in the next iteration. This
outer loop of the FBRRT-SDE algorithm is summarized in
Algorithm 1.
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A. Kinodynamic RRT Forward Sampling

We desire sampling methods that seek to explore the whole
state space, thus increasing the likelihood of sampling in the
proximity of optimal trajectories. For this reason, we chose
a method inspired by kinodynamic RRT [21]. The selection
procedure for this method ensures that the distribution of the
chosen particles is more uniformly distributed in a user-supplied
region of interest, is more likely to select particles that explore
the empty space, and is, therefore, less likely to oversample
dense clusters of particles.

With some probability εrrt
i ∈ [0, 1] we choose the RRT sam-

pling procedure, but otherwise we choose a particle uniformly
from {xji}Mj=1, each particle having an equal weight. This en-
sures that dense particle clusters will still receive more attention.
The choice of the parameter εrrt

i balances exploring the state
space against refining the area around the current distribution.

For the drift values, that is, those sampled from the distribution
κ left unspecified in Section IV-A, we again choose a random
combination of exploration and exploitation. For exploitation
we choose

Ki = f(ti, Xi, μi(Xi;αi)) (39)

and for exploration we choose

Ki = f(ti, Xi, u
rand) (40)

where the control is sampled randomly from a user-supplied
set urand ∼ U rand. For example, for minimum fuel (L1 cost)
problems where the control is bounded as u ∈ [−1, 1] and the
running cost is L = |u|, we select U rand = {−1, 0, 1} because
the policy (38) is guaranteed to only return values in this discrete
set.

Algorithm 2 summarizes the implementation of the RRT-
based sampling procedure that produces the forward sampling
tree G. The algorithm takes as input any tree with width M̃ and
adds nodes at each depth until the width is M , the desired tree
width. In the first iteration, there are no value function estimated
parameters available to exploit, so we set εrrt = 1 to maximize
exploration using RRT sampling.

B. Path-Integral Dynamic Programming Heuristic

Next, we propose a heuristic design choice for the backward
pass weighting variables ρi+1, and justify this choice with theo-
retical analysis. A good heuristic will give large weights to paths
likely to have low values over the whole interval [0, T ]. Thus, in
the middle of the interval, we care both about the current running
cost and the expected cost. A dynamic programming principle
result following directly from [25, Ch. 4, Corollary 7.2] indicates
that

V ∗(0, x0) =

min
u[0,ti+1]

EPu
i+1

[

∫ ti+1

0

�(s,Xs, us) ds+ V ∗(ti+1, Xi+1)]

where u[0,ti+1] is any control process in U on the inter-
val [0, ti+1] and Pui+1 is the measure produced by the drift
Ks = f(s,Xs, us). Following this minimization, we choose the

Algorithm 2: RRT Branched-Sampling.

1: procedure FORWARDPASS (G, (α1, . . . , αN ))
2: for k = M̃ + 1, . . . ,M do � Add node each loop
3: for i = 0, . . . , N − 1 do � For each time step
4: {xji}j ← G.nodesAtTime(i)
5: if εrrt > κrrt ∼ Uniform([0, 1]) then
6: xrand

i ∼ Uniform(X roi)

7: (xnear
i , jnear)← Nearest({xji}j , xrand

i )
8: else
9: (xnear

i , jnear) ∼ Uniform({xji}j)
10: end if � jnear is index of selected node
11: if εopt > κopt ∼ Uniform([0, 1]) then
12: ui ← μi(x

near
i ;αi+1) � (38)

13: else
14: ui ∼ U rand

15: end if
16: ki ← f(ti, x

near
i , ui)

17: wi ∼ N (0,ΔtIn)
18: xnext

i+1 ← xnear
i + kiΔt+ σ(ti, x

near
i )wi

19: jnext ← G.addEdge(i, jnear, (xnear
i , ki, x

next
i+1))

20:
−→
� 0:i−1 ← G.getRunCost(i− 1, jnear)

21:
−→
� 0:i ← −→� 0:i−1 + �i(x

near
i , ui)Δt

22: G.setRunCost(i, jnext,
−→
� 0:i)

23: end for
24: end for
25: return G
26: end procedure

heuristic to be the discrete approximation of

ρi+1 =

∫ ti+1

0

�(s,Xs, us) ds+ V ∗(ti+1, Xi+1) (41)

where u[0,ti+1] is chosen identically to how the control for the
drift is produced.

Although the theory up to this point does not require Ks to
be a feasible drift under the dynamic constraints of the SOC
problem, for the proposed FBRRT-SDE algorithm, the drift is
always chosen asKs = f(s,Xs, u) for some randomly selected
u ∈ U . In practice, the running cost is approximated by Euler-
Maruyama, and the optimal value function is approximated
by the latest estimate of the value function V (x;αi+1). The
running cost is computed in the forward sampling in line 21 of
Algorithm 2.

Algorithm 3 details the implementation of the backward pass
with local entropy weighting. Line 18 does not, theoretically,
have an effect on the optimization, since it will come out of the
exponential as a constant multiplier, but it has the potential to
improve the numerical conditioning of the exponential function
computation as discussed in [31, Ch. 5, eq. (6.33)]. The λ

value is, in general, a parameter which must be selected by the
user. For some problems, we choose to search over a series of
possible λ parameters, evaluating each one with a backward
pass and using the one that produces the smallest expected
cost over a batch of trajectory rollouts executing the computed
policy.
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Algorithm 3: Local Entropy Weighted LSMC Backward
Pass.

1: procedure BACKWARDPASS (G)
2: {ξjN}j ← G.pathsAtTime(N)

3: {xjN}j ← {ξjN}j
4: yN ← [g(x1N ) · · · g(xMN )]�

5: αN ← arg minα
∑
j ΘN (ŷjN − Φ(xjN )α)2

6: for i = N − 1, . . . , 1 do � For each time step
7: {ξji+1}j ← G.pathsAtTime(i+ 1)
8: for j = 1, . . . ,M do � For each path
9: (xji , k

j
i , x

j
i+1)← ξji+1 � xji = xji,i+1, etc.

10: yji+1 ← Φ(xji+1)αi+1 � (27)

11: zji+1 ← σ�i+1(x
j
i+1)∂xΦ(x

j
i+1)αi+1 � (14)

12: μji ← μi(x
j
i ;αi+1) � (38)

13: dji ← σ−1i+1(x
j
i+1)(f

μ
i − kji )

14: ŷji ← yji+1 + (�μi + zj�i+1d
j
i )Δt � (13)

15:
−→
� 0:i ← G.getRunCost(i, j)

16: ρji+1 ← yji+1 +
−→
� 0:i � (41)

17: end for
18: ρi+1 ← ρi+1 −minj{ρji+1} � exp conditioning
19: Θi+1 ← exp(− 1

λ
ρi+1) � (26)

20: αi ← arg minα
∑
j Θ

j
i+1(ŷ

j
i − Φ(xji )α)

2 � (28)
21: end for
22: return (α1, . . . , αN )
23: end procedure

C. Path Integral Erode

After the backward pass of the algorithm, we obtain up-
dated approximations of the value function {V (·;αi)}i along
with the tree G that represents the forward sampling path
measures {−→P i}i. To improve our approximation, we can use
our value function estimates to create a new tree G′ with
new forward sampling measures {−→P ′i}i via the heuristic ρi
in (41).

We have found experimentally that sampling a new tree from
scratch is both wasteful and shows signs of catastrophic for-
getting. That is, the subsequent backward pass performs worse,
since it has lost data samples, which were important to form good
function estimates. On the other hand, simply adding more sam-
ples to the current tree can prove to be unsustainable in the long
run. To keep the time complexity constant between iterations,
we propose to bound the number of samples at each time step.
After each backward pass, we remove as many samples as were
added in the forward pass, “eroding” the tree before the forward
pass “expands” it.

The algorithm starts with a tree of width M and ends with
a tree of width M̃ at every depth. We begin at the end of the
trajectory i = N and remove the nodes {xjN}Mj=1 with highest

ρjN value until there are only M̃ nodes left at depth N . We
proceed in a similar fashion backwards down the tree, removing
nodes with high ρji values. However, due to the tree structure of
the path measures, if we remove nodes that have children, we
disconnect the paths and ruin the assumed structure. Thus, we

Algorithm 4: Path Integral Erode.

1: procedure ERODE (G, (αi)i)
2: for i = N, . . . , 1 do � For each time step
3: {ρji}j ← G.getHeuristics(ti)
4: for all j′ ∈ sortDescending({ρji}j) do
5: if G.hasNoChildren(xj

′
i ) then

6: G.removeParentEdge(xj
′
i )

7: G.removeNode(xj
′
i )

8: end if
9: if G.numNodes(ti) = M̃ then

10: break
11: end if
12: end for
13: end for
14: return G
15: end procedure

only remove nodes that have no children. The implementation
of this algorithm is detailed in Algorithm 4.

D. Function Approximation

In our implementation of the FBRRT-SDE algorithm, the
value function is represented by 2nd order multivariate Cheby-
shev polynomials. Specifically, we use all products of the basis
functions

⋃n
j=1{1, xj , 2x2j − 1} with polynomial degree 2 or

lower, namely

Φ(x) := (1, x1, . . . , xn, 2x
2
1 − 1, . . . , 2x2n − 1

x1x2, . . . , x1xn, x2x3, . . . , x2, xn, . . . , xn−1xn).

For better conditioning, points are first normalized to the interval
[−1, 1]n based on a parameterized region of interest to obtain
the basis functions Φ(. . . , (xj − aoffset

j )/ascale
j , . . .).

E. Computational Complexity

The computational complexity of the forward pass is domi-
nated by the nearest-neighbor search. In our implementation, we
use brute force search so the complexity of Line 7 in Algorithm 2
is O(M), but the complexity can be lowered to O(log(M)) if
a kd-tree is used for the nearest neighbor search, instead. Thus,
the forward pass complexity is O(NM2) (or O(NM log(M))
with a kd-tree).

The backward pass complexity is dominated by the
least squares regression in Line 20 in Algorithm 3. A QR-
decomposition solver is used for the regression, so if k is the
number of basis functions used in Φ(x), and M � k, then its
complexity is O(Mk2). Thus, the complexity of the backward
pass is O(NMk2).

VI. NUMERICAL EXAMPLES

We evaluated the FBRRT-SDE algorithm by applying it to
three challenging nonlinear SOC problems. For all three prob-
lems, the terminal cost is taken to be a quadratic function
centered at the origin and the running cost is taken to be an
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L1/min-fuel cost, which makes these problems challenging for
traditional solution methods. For the first two problems the
control input was restricted in the interval U = [−1, 1]. For the
third problem the control is restricted to U = [−1, 1]2.

A. L1 Double Integrator

In order to compare the proposed FBRRT-SDE algorithm to
the parallel sampled techniques in [6], which we denote below as
parallel-sampled FBSDE, we considered the double integrator
system with[

dX
(1)
s

dX
(2)
s

]
=

[
X

(2)
s

u

]
ds+

[
0.01 0

0 0.1

][
dW

(1)
s

dW
(2)
s

]
with L1 running cost, i.e.,

inf
u[0,T ]

EQ

[ ∫ T

0

c0|us|ds+
n∑
j=1

cj(X
(j)
T )2

]
(42)

where c0, c1, c2 are scalar parameters. When the system starts
with positive position and velocity, the optimal policy is to
decelerate to a negative velocity, coast for a period of time so that
fuel is not used, and then accelerate to reach the origin. For this
example, the number of particles per time step isM = 1, 024, the
number of time steps is N = 64, and the erode particle number
is M̃ =M/2.

As shown in Fig. 6(c)–(d), the parallel-sampled FBSDE takes
a significant number of iterations to begin converging to the
near-optimal policy, while the proposed method produces a near-
optimal policy at the first iteration. The algorithm converges to
the optimal policy.

We also compared the convergence speed and robustness of
the two methods by randomly sampling different starting states
and evaluated their relative performance over a number of trials.
For each of 30 random initial states x0, we ran 20 trials of each
method for a number of iterations, each iteration producing an
expected cost for the computed policy. We normalized the final
costs across the initial states by dividing all costs for a particular
initial state by the largest cost obtained across both methods. For
each iteration, we assign the value of the accumulated minimum
value across previous iterations for that trial, i.e., the value is the
current best cost after running that many iterations, regardless of
the current cost. We aggregated these values across initial states
and trials into the box plots in Fig. 6. Since the FBRRT-SDE
is significantly slower than the parallel-sampled FBSDE per
iteration due to the nearest neighbors calculation, we scale each
iteration by the runtime. Note that every iteration of FBRRT-
SDE after the first one requires approximately half the runtime,

since only half of the eroded tree needs resampling. In summary,
the FBRRT-SDE converges faster using fewer iterations than the
parallel-sampled FBSDE, and does so with half as many particle
samples.

B. L1 Double Inverted Pendulum

In order to study the proposed FBRRT-SDE algorithm on a
highly nonlinear system in higher dimensions, we considered
the double inverted pendulum with state space dimension n = 4
presented in [37], but with added damping friction to the joints.
Thus, the dynamics are in the form dXs = f(Xs, us) ds+
σ dWs, where f is given in (44) shown at the bottom of this
page, where d0 = 10, d1 = 0.37, d2 = 0.14, d3 = 0.14, f1 =
4.9, f2 = 5.5, f3 = 0.1, f4 = 0.1 are scalar parameters of the
system, and where σ = diag[0.03, 0.03, 0.18, 0.18]. The associ-
ated optimal control problem is

inf
u[0,T ]

EQ

[ ∫ T

0

c0|us|ds+
n∑
j=1

cj(X
(j)
T )2

]
(43)

where c0, c1, c2, c3, c4 are scalar parameters. With our un-
optimized implementation (where brute force search is used
for nearest neighbors) this example takes approximately 10 s
to complete the first iteration and 80 s to complete 10 it-
erations for M = 1× 1024 (11 and 85 s, respectively, for
M = 3× 1024). Two initial conditions were evaluated, xvert

0 =
[0, 0, 0, 0]�, where the bars are vertically down and motionless,
andxoff

0 = [π/10, π/10, 0, 0]�, where the angles of both bars are
slightly perturbed from xvert

0 by 18◦. The number of time steps
is taken to be N = 80 and the erode particle number is selected
as M̃ = (3/4)M . The evaluation of these conditions over 30
trials with differing numbers of particles M is provided in
Fig. 7.

Since the initial conditions of the two experiments are close,
their optimal values should also be close. Despite having com-
parable optimal values, the xoff

0 condition converges far more
rapidly than the xvert

0 condition. Slightly perturbing the initial
condition vastly improved the performance of the algorithm for
this problem. The reason the xvert

0 condition performs poorly is
likely because the system is very sensitive in that region and a
localized policy results in a bifurcation of trajectory densities.
If the differing groups of trajectories have similar heuristic
values, the value function approximation tries to fit a function to
groups of particles in different sides of the state space, resulting
in poor accuracy for either group. When the xoff

0 condition is
used, there is less ambiguity in which trajectory distributions
are near-optimal, resulting in better performance.

f(x, u) ≡ f
([
α β ω ψ

]�
, u

)

=

⎡⎢⎢⎢⎢⎣
ω
ψ

d3(d2ψ2 sinβ+2d2ωψ sinβ−f3ω+f2 sin(α+β)−f1 sinα)+d2 cosβ(d2ω2 sinβ+f4ψ−f2 sin(α+β))+d0d3 u
d1d3+2d2d3 cosβ−d22 cos2 β

−(d1+2d2 cosβ)(d2ω2 sinβ+f4ψ−f2 sin(α+β))−d2 cosβ(d2ψ2 sinβ+2d2ωψ sinβ−f3ω+f2 sin(α+β)−f1 sinα)−d0d2 cosβ u

d1d3+2d2d3 cosβ−d22 cos2 β

⎤⎥⎥⎥⎥⎦ . (44)
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Fig. 6. (a) and (b) Comparison of parallel-sampled FBSDE [6] and FBRRT-SDE for the L1 double integrator problem for random initial states.
Expected trajectory costs for the computed policies are normalized across different initial conditions. The relative timings of iterations are visualized
by their placement on the x-axis, were the right edge of each figure represents 2.4 s into runtime. (c) and (d) Trajectory samples from policies
generated after the first 6 iterations. The first iteration is colored red, followed by yellow, green, cyan, dark blue, and magenta. Thick lines are
mean trajectories. (a) Parallel-sampled FBSDE [6]. (b) FBRRT-SDE. (c) Trajectory samples for parallel-sampled FBSDE. (d) Trajectory samples for
FBRRT-SDE.

C. L1 Linearized Quadcopter

In order to demonstrate the proposed algorithm on a higher-
dimensional system, we considered the linearized dynamics
of a quadcopter having state space dimension n = 8, adapted
from [38]. The dynamics are in the form dXs = f(Xs, us) ds+
σ dWs, where

f(x, u) = f

([
φ θ p q u v x y

]�
,
[
τx τy

]�)
=

[
p q dτx dτy −gθ gφ u v

]�
where d=4.1, g=9.8 are scalar parameters of the
system, and where σ=diag[10−5, 10−5, 0.2, 0.2, 0.002,

0.002, 10−5, 10−5]. The associated optimal control problem is

inf
u[0,T ]

EQ

[ ∫ T

0

|u(1)s |+ |u(2)s |ds+
n∑
j=1

cj(X
(j)
T )2

]
(45)

where c1 = c2 = c3 = c4 = c5 = c6 = 1, c7 = c8 = 100 are
scalar parameters. With our unoptimized implementation (where
brute force search is used for nearest neighbors) this example
takes approximately 5 s to complete the first iteration and 37 s
to complete ten iterations for M = 1× 1024 (18 and 110 s, re-
spectively, for M = 3× 1024). The results are shown in Fig. 8.

For this example, progress in terms of convergence primarily
occurs in the first iteration. Adding more particles significantly
improved progress both in the first iteration and after several
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Fig. 7. Mean policy cost statistics for L1 double inverted pendulum
problem. The mean bars and standard deviation whiskers characterize
the distribution over 30 trials, where the value for each iteration is the
accumulated minimum of the values over all previous iterations in that
trial up to and including that iteration. M particles are used per time
step in each condition. (a) Mean cost distribution for xvert

0 . (b) Mean cost
distribution for xoff

0 .

Fig. 8. Mean policy cost statistics for L1 linearized quadcopter prob-
lem. The mean bars and standard deviation whiskers characterize the
distribution over 30 trials, where the value for each iteration is the
accumulated minimum of the values over all previous iterations in that
trial up to and including that iteration. M particles are used per time step
in each condition.

iterations. However, there were diminishing returns as the num-
ber of particles increased from 2× 1024 to 3× 1024, likely
due to the fact that the first iteration is already near optimal. Of
interest is also the observation that the time required to solve this
8-D problem was not significantly longer than the previous 4-D
example. This suggests that the time-complexity of the proposed
method is more related to the complexity of the control problem
itself rather than the dimensionality of the state space.

VII. CONCLUSION

We have proposed a novel generalization of the FBSDE
approach to solve SOC problems, combining branched sampling
techniques with weighted least squares function approximation
to greatly expand the flexibility of these methods. By leveraging
the efficient space-filling properties of RRT methods, we have
demonstrated that our method significantly improves the con-
vergence properties of previous FBSDE numerical methods. We
have shown how the proposed method works hand-in-hand with
a local entropy-weighted LSMC method, concentrating function
approximation in the regions where optimal trajectories are most
likely to be dense. We have demonstrated that FBRRT-SDE
can generate feedback control policies for high-dimensional
nonlinear SOC problems.

Several of the design choices exposed by our approach offer
significant opportunities for further research. First, although
in this article, we have employed the most basic of the RRT
algorithms, there has been almost two decades of development
in this field. Employing more elaborate methods may improve
the forward sampling even further. In addition, in this article, we
did not discuss state constraints or obstacles. Since RRT methods
are naturally designed to accommodate obstacles, the methods
proposed here should be extendable to those problems as well.

Moreover, time discretization plays a significant role on the
accuracy of the numerical solutions of Feynman-Kac forward
backward SDEs. In this work, we used the conventional Euler-
Maruyama method for time discretizations; however, as is shown
in [39] and [40], the numerical accuracy of backward integration
as well as the iterative robustness of the algorithms can be signif-
icantly improved using Taylor-based estimators for numerically
solving Feynman-Kac FBSDEs.

Another area of research worth investigating is to find other
methods of value function representation. In this article, we
use a rather simple parameterization of the value functions,
though this simplicity offers some distinct benefits. Specifically,
quadratic basis functions result in gradients that are linear, and
policies that are typically stable. In regions where particles
are sparse, the convexity of the value function representation
naturally drives the system back toward the particle distribu-
tion. Further investigations might reveal other value function
parameterizations with potentially better representation power
than quadratic functions, while maintaining the benefits and the
nice properties of the latter.
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