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On the Hybrid Minimum Principle: The Hamiltonian and Adjoint
Boundary Conditions

Ali Pakniyat , Member, IEEE, and Peter E. Caines , Fellow, IEEE

Abstract—The hybrid minimum principle is presented for the
optimal control of deterministic hybrid systems with both au-
tonomous and controlled switchings and jumps where state jumps
at the switching instants are permitted to be accompanied by
changes in the dimension of the state space. A feature of par-
ticular importance is the explicit presentation of the boundary
conditions on the Hamiltonians and the adjoint processes before
and after switchings and jumps. The numerical benefit of these ex-
pressions are demonstrated on a modified version of the multiple
autonomous switchings algorithm. The results are illustrated for
the hybrid model of an electric vehicle powertrain with a two-speed
transmission.

Index Terms—Hybrid systems, minimum principle (MP), non-
linear control systems, optimal control, Pontryagin maximum
principle.

I. INTRODUCTION

One of the principal approaches in solving optimal control problems
is the Minimum Principle (MP), also called the Maximum Principle in
the pioneering work of Pontryagin et al. [1], which provides a set of
necessary conditions that must be satisfied by all optimal processes.
This principle states that along optimal state processes there exist
adjoint processes such that their joint governing dynamics possess a
Hamiltonian canonical form and that the optimal input process is the
point-wise minimizer (or the maximizer depending on the sign conven-
tion) of the Hamiltonian function. In other words, the significance of the
MP is that it turns the “cost functional minimization” (over the infinite
dimensional space of input processes) into a “Hamiltonian function
minimization” (over the point-wise value of the input), based upon
solutions of a set of two-point boundary value ordinary differential
equations (ODEs).

The Minimum Principle, as indicated by the name, is a principle,
i.e., a not yet completely precise statement that requires technical
conditions to be stated as a theorem [2]. For control systems with
continuous dynamics these technical conditions are mostly on the
regularity requirements (as, e.g., indicated in [3] they are joint con-
ditions on [continuous] state and input processes). For hybrid control
systems, however, further technical conditions need to be imposed
on interactions of the continuous and discrete subsystems. Various
versions of the MP for hybrid systems are available in the control
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theory literature [4]–[14]. However, they do not exhaust the full power
of the principle. In particular, (i) the presence of both autonomous
and controlled switchings, (ii) the possibility of jumps in the state
at switching instances, (iii) the possibility of dimension changes in
the state space, and (iv) the consideration of switching costs together
with running and terminal costs, are characteristics of which only strict
subsets have appeared in the literature.

However, there are several engineering systems that exhibit the
features (i)–(iv) abovementioned in entirety, or with combinations for
which a version of the MP is not immediately available. As an important
example, one can refer to the control of electric vehicles equipped
with a dual-stage planetary transmission studied in [15]–[18] whose
associated hybrid optimal control problem is presented in this article
as well. Similar characteristics appear in the extension of this work to
stochastic hybrid systems [19] and in hybrid mean field games theory
and applications [20], [21] where an agent’s state extended by the
mean field terms (associated with active agents) undergoes dimension
changes when a group of agents join or leave the population, and where
the terminal cost of the leaving agents constitutes a switching cost for
the population’s mean field.

The primary objective of this article is the presentation of a general
version of the Hybrid Minimum Principle (HMP) for deterministic
systems that captures all characteristics (i)–(iv) abovementioned. The
regularity assumptions on the continuous dynamics are minimal and
imposed primarily to ensure the existence and uniqueness of solutions as
well as continuous dependence on initial conditions [22]–[24]. Further
generalizations such as the lying of the system’s vector fields in Rieman-
nian spaces [14], nonsmooth assumptions [4], [5], state-dependence of
the control value sets [8], and interactions with stochastic subsystems
[19], as well as restrictions to certain subclasses, such as those with
regional dynamics [25], [26], and with specified families of jumps
[27]–[30], become possible through variations and extensions of the
framework presented here.

The secondary objective of this work is the explicit expression of
the boundary conditions on the Hamiltonians and adjoint processes in
contrast to their implicit expressions in the literature in the form of the
so-called transversality conditions. This provides a potential to improve
the performance of numerical algorithms (e.g., [10], [31]–[40]) that
satisfy the Hamiltonian continuity condition implicitly.

The tertiary objective of this note is to illustrate the theoretical
results by means of a worked out example of energy minimization
for an electric vehicle whose study requires the features (i), (ii), and
(iii) abovementioned, due to the addition of a multispeed transmission.
More specifically, feature (i) is a necessity since the initiation of gear
changing is a controlled switching while the termination of a gear
changing process requires the satisfaction of full stop conditions for
certain rotary elements, hence is an autonomous switching. Moreover,
(ii) and (iii) are essential due to the possession of different mechanical
degrees of freedom in each mode and the relationships between the
generalized coordinates in each of those modes. Last but not least, the
accommodation of (iv) permits the study of hybrid optimal control
problems associated with the minimization of the total energy for
the acceleration and deceleration of the vehicle with switching costs
representing the energy consumption and losses contributed by the
electronics operating the locks and brakes inside the transmission
mechanism. Further analytic examples can be found in [41]–[43].
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The organization of this article is as follows. The definition of hybrid
systems and the associated class of hybrid optimal control problems are,
respectively, presented in Sections II and III. The HMP is presented
in Section IV in the conventional Hamiltonian canonical form and
with boundary conditions in the generalized transversality form. In
Section V, an explicit expression for the transversality conditions is
presented based upon which a modified version of the multiple au-
tonomous switchings (MAS) algorithm is presented. The representative
power of the theoretical framework and the implementation steps of the
HMP results are illustrated in Section VI where the energy consumption
minimization for an EV equipped with a particular transmission is
studied.

II. HYBRID SYSTEMS

A (deterministic) hybrid system H is a septuple

H = {H, I,Γ, A, F,Ξ,M} (1)

where the symbols in the expression and their governing assumptions
are defined as follows.

A0: H :=
∐

q∈Q Rnq is called the (hybrid) state space of the hy-
brid system H, where

∐
denotes disjoint union, i.e.,

∐
q∈Q Rnq =⋃

q∈Q{(q, x) : x ∈ Rnq}, where Q = {1,2, . . . , |Q|} ≡ {q(1), q(2),
. . . , q(|Q|)},with |Q| < ∞, is a finite set of discrete states (compo-
nents), and

{Rnq}q∈Q is a family of finite dimensional continuous state spaces,
where nq ≤ n < ∞ for all q ∈ Q.

I := Σ× U is the set of system input values, where
Σ with |Σ| < ∞ is the set of discrete state transition and continuous

state jump events extended with the identity element,
U = {Uq}q∈Q is the set of admissible (continuous) control values,

where each Uq ⊂ Rmq is a compact set in Rmq .
The set of admissible (continuous) control inputs U(U) :=

L∞([t0, T∗), U) is defined to be the set of all measurable functions that
are bounded up to a set of measure zero on [t0, T∗), T∗ < ∞, where the
boundedness property necessarily holds, here since admissible inputs
take values in the compact set U .

Γ : H × Σ → H is a time independent (partially defined) discrete
state transition map.

Ξ : H × Σ → H is a time independent (partially defined) contin-
uous state jump transition map. For all ξ ∈ Ξ, the functions ξσ ≡
ξ(·, σ) : Rnq → Rnp , p ∈ A(q, σ) are assumed to be continuously
differentiable in the continuous state x ∈ Rnq .

A : Q× Σ → Q denotes both a deterministic finite automaton and
the automaton’s associated transition function on the state space Q
and event set Σ, such that for a discrete state q ∈ Q only the discrete
controlled and uncontrolled transitions into the q-dependent subset
{A(q, σ), σ ∈ Σ} ⊂ Q occur under the projection of Γ on its Q com-
ponents: Γ : Q× Rn × Σ → H|Q. In other words, Γ can only make a
discrete state transition in a hybrid state (q, x) if the automaton A can
make the corresponding transition in q.

F is an indexed collection of vector fields {fq}q∈Q such that for each
q ∈ Q there exist kfq ≥ 1 for which fq ∈ Ckfq (Rnq × Uq → Rnq )
satisfies a joint uniform Lipschitz condition, i.e., there exists Lf < ∞
such that ‖fq(x1, u1)− fq(x2, u2)‖ ≤ Lf (‖x1 − x2‖+ ‖u1 − u2‖)
for all x, x1, x2 ∈ Rnq , u, u1, u2 ∈ Uq .

M = {mα : α ∈ Q×Q} denotes a collection of switching mani-
folds such that, for any ordered pair α ≡ (α1, α2) = (q, r), mα is a
smooth, i.e., C∞ codimension 1 submanifold of Rnq , described locally
by mα = {x : mα(x) = 0}, and possibly with boundary ∂mα. It is
assumed that mα ∩mβ = ∅, whenever α1 = β1 but α2 = β2, for all
α, β ∈ Q×Q. �

Switching manifolds will function in such a way that whenever a
trajectory governed by the controlled vector field meets the switching
manifold transversally there is an autonomous switching to another
controlled vector field or there is a jump transition in the continuous state
component, or both. A transversal arrival on a switching manifoldmq,r ,

Fig. 1. Hybrid automata diagram for the transmission-
equipped electric vehicle in [15] and [17] that serves as an example 
in Section VI

at state xq ∈ mq,r = {x ∈ Rnq : mq,r(x) = 0} occurs whenever

∇mq,r (xq)
Tfq (xq, uq) = 0 (2)

for uq ∈ Uq , and q, r ∈ Q. It is assumed that
A1: The initial state h0 := (q0, x(t0)) ∈ H is such that

mq0,qj (x0) = 0, for all qj ∈ Q. �
A hybrid input process defined over [t0, tf ), tf < ∞ is denoted

by IL = (SL,u), where SL = ((t0, σ0), (t1, σ1), . . . , (tL, σL)), L <
∞, is a finite hybrid sequence of switching events with τL :=
{t0, t1, t2, . . . , tL} a strictly increasing sequence of times, σi ∈ Σ, i ∈
{1, 2, . . . , L}, withσ0 = id, an admissible language of the automataA,
and u ≡ {uq0 ,uq1 , . . . ,uqL} ∈ U , with uqi ∈ L∞([ti, ti+1), Uqi)
and admissible input, such that the associated hybrid state trajectory
satisfies.

A. Continuous State Dynamics

The continuous component of the hybrid state x =
{xq0(·), xq1(·), . . . , xqL(·)} is a piecewise continuous function,
which is almost everywhere differentiable and on each time segment
specified by τL satisfies the dynamical equation

ẋqi(t) = fqi (xqi(t), u(t)), a.e. t ∈ [ti, ti+1) (3)

with the initial conditions

xq0 (t0) = x0 (4)

xqi (ti) = ξqi−1qi

(
xqi−1

(ti−)
)
:= ξqi−1qi

(
lim
t↑ti

xqi−1
(t)

)
. (5)
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B. Autonomous Discrete Transition Dynamics

An autonomous (uncontrolled) discrete state transition from qi−1

to qi together with a continuous state jump ξqi−1qi occurs at the au-
tonomous switching time ti if xqi−1

(ti−) := limt↑ti xqi−1
(t) satisfies

a switching manifold condition of the form

mqi−1qi

(
xqi−1

(ti−) , ti
)
= 0 (6)

for qi ∈ Q, where mqi−1qi(x) = 0 defines a (qi−1, qi) switching man-
ifold and it is not the case that either (i) x(ti−) ∈ ∂mqi−1qi or (ii)
fqi−1

(x(ti−), u(ti−)) ⊥ ∇mqi−1qi(x(ti−)), i.e., ti is not a manifold
termination instant (see [44]). With the Assumptions A0 and A1 in
force, such a transition is well defined and labels the event σqi−1qi ∈ Σ,
which corresponds to the hybrid state transition

h (ti) ≡ (qi, xqi (ti))

=
(
Γ
(
qi−1, xqi−1

(ti−) , σi

)
, ξqi−1qi

(
xqi−1

(ti−)
))

. (7)

C. Controlled Discrete Transition Dynamics

A controlled discrete state transition together with a controlled
continuous state jump ξqi−1qi occurs at the controlled discrete event
time ti if ti is not an autonomous discrete event time and if there exists
a controlled discrete input event σqi−1qi ∈ Σ for which

h (ti) ≡ (qi, xqi (ti))

=
(
Γ
(
qi−1, xqi−1

(ti−) , σi

)
, ξqi−1qi

(
xqi−1

(ti−)
))

(8)

with (ti, σqi−1qi) ∈ SL and qi ∈ A(qi−1). �
A2: For a specified sequence of discrete states {qi}Li=0, the class of

admissible input-state trajectories is nonempty. �
Theorem 2.1: [44] A hybrid system H with an initial hybrid state

(q0, x0) satisfying Assumptions A0–A2 possesses a unique hybrid
input-state trajectory on [t0, T∗∗), where T∗∗ is the least of

i) T∗ ≤ ∞, where [t0, T∗) is the temporal domain of the definition of
the hybrid system;

ii) a manifold termination instant T∗ of the trajectory
h(t) = h(t, (q0, x0), (SL, u)), t ≥ t0, at which either
x(T∗−) ∈ ∂mq(T∗−)q(T∗) or fq(T∗−)(x(T∗−), u(T∗−)) ⊥
∇mq(T∗−)q(T∗)(x(T∗−)). �

We note that Zeno times, i.e., accumulation points of discrete tran-
sition times, are ruled out by A2.

III. HYBRID OPTIMAL CONTROL PROBLEMS

A3: Let {lq}q∈Q, lq ∈ Cnl(Rn × U → R+),nl ≥ 1, be a family of
running cost functions; {cσ}σ∈Σ, cσ ∈ Cnc(Rn × Σ → R+), nc ≥ 1,
be a family of switching cost functions; and {gq}q∈Q, gq ∈ Cng (Rn →
R+), ng ≥ 1, be a family of terminal cost functions satisfying the
following assumptions.

i) There exists Kl < ∞ and 1 ≤ γl < ∞ such that
|lq(x, u)| ≤ Kl(1 + ‖x‖γl) and |lq(x1, u1)− lq(x2, u2)| ≤
Kl(‖x1 − x2‖+ ‖u1 − u2‖), for all q ∈ Q, x ∈ Rnq , u ∈ Uq .

ii) There exists Kc < ∞ and 1 ≤ γc < ∞ such that |cσ(x)| ≤
Kc(1 + ‖x‖γc), σ ∈ Σ, σ1 = q, x ∈ Rnq .

iii) There exists Kg < ∞ and 1 ≤ γg < ∞ such that |gq(x)| ≤
Kg(1 + ‖x‖γg ), q ∈ Q, x ∈ Rnq . �

Consider the initial time t0, final time tf < ∞, and initial hybrid state
h0 = (q0, x0). With the number of switchings L held fixed, the set of
all hybrid input trajectories with exactlyL switchings is denoted by IL.
Let IL ∈ IL be a hybrid input trajectory that by Theorem 2.1 results in
a unique hybrid state process. Then, hybrid performance functions for

the corresponding hybrid input-state trajectory are defined as follows:

J (t0, tf , h0, L; IL) :=

L∑
i=0

∫ ti+1

ti

lqi (xqi(s), u(s), s) ds

+
L∑

j=1

cqj−1qj

(
tj , xqj−1

(tj−)
)
+ g (xqL (tf )) . (9)

IV. HYBRID MINIMUM PRINCIPLE

Theorem 4.1 ([45]): Consider the hybrid system H subject to As-
sumptions A0–A3, and the HOCP with the hybrid performance function
(9). Define the family of system Hamiltonians by

Hq (xq, λq, uq, t) = lq (xq, uq, t) + λT
q fq (xq, uq, t) (10)

xq, λq ∈ Rnq ,uq ∈ Uq , q ∈ Q, and let {qi}Li=0 be a specified sequence
of discrete states with its associated set of switchings. Then, for an
optimal input uo and along the corresponding optimal trajectory xo,
there exists an adjoint process λo such that

Hq

(
xo
q, λ

o
q, u

o
q, t
) ≤ Hq

(
xo
q, λ

o
q, v, t

)
(11)

for all v ∈ Uq , where (xo, λo) satisfy

ẋo
q =

∂Hq

∂λq

(xo
q, λ

o
q, u

o
q, t) ≡ fq(x

o
q, u

o
q, t) (12)

λ̇o
q = −∂Hq

∂xq

(xo
q, λ

o
q, u

o
q, t)

≡ −∂lq
∂x

(xo
q, u

o
q, t)−

∂fq
∂x

(xo
q, u

o
q, t)

Tλo
q (13)

almost everywhere t ∈ [t0, tf ], subject to

xo
q0

(t0) = x0 (14)

xo
qj

(tj) = ξqj−1qj

(
xo
qj−1

(tj−)
)

(15)

λo
qL

(tf ) = ∇g
(
xo
qL

(tf )
)

(16)

λo
qj−1

(tj−) ≡ λo
qj−1

(tj) = ∇ξT
qj−1qj

λo
qj
(tj+)

+∇cqj−1qj + pj∇mqj−1qj (17)

where pj ∈ R when tj indicates the time of an autonomous switching,
subject to the switching manifold condition mqj−1qj(x

o
qj−1

(tj−)) =

0, and pj = 0 when tj indicates the time of a controlled switching.
Moreover, the Hamiltonian satisfies

Hqj−1
(tj−) ≡ Hqj−1

(
xo
qj−1

, λo
qj−1

, uo
qj−1

, toj−
)

= Hqj

(
xo
qj
, λo

qj
, uo

qj
, toj+

)
− ∂cqj−1qj

∂t
− pj

∂mqj−1qj

∂t

≡ Hqj (tj+)− ∂cqj−1qj

∂t
− pj

∂mqj−1qj

∂t
(18)

at both autonomous and controlled switching instants tj . �

V. EXPLICIT EXPRESSIONS AND THE ASSOCIATED

HMP–MAS ALGORITHM

LetN :=
∑L

i=0 nqi . We remark that in the forward-backward ODEs
(12) and (13), there is a total of 2N state-type components for which
N initial conditions are provided by (14) and (15) and N terminal
conditions are provided by (16) and (17). There are alsoL unknown (not
a priori fixed) values for tj for which there are L algebraic conditions
provided by (18). Moreover, for every case of an autonomous switching,
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there is an unknown scalar pj whose values can be uniquely determined
from the simultaneous solution of the set of equations together with
the set of constraints imposed by (6) whose count is the same as the
number of the unknown values of pj’s. Hence, the set of necessary
conditions in the HMP is complete in the sense that the number of
unknowns match the number of conditions they must satisfy. However,
the implicit determination of pj’s from the holistic set of differential-
algebraic equations might not translate well in some numerical solution
methodologies.

A. Explicit Expressions for the Hamiltonians and the
Adjoints Boundary Conditions

As obtained in the authors’ proof of the HMP (see, e.g., [45]), the
scalar pj in the adjoint boundary conditions (17) and the Hamiltonian
boundary conditions can be alternatively determined from

pj :=
l
qj−1

qj ,ξ
+ λT

qj
f
ξ,qj−1

qj ,ξ
− ∂c

1,fqj−1
t,x

∂mqj−1qj

∂t
+
[
∂mqj−1qj

∂xqj−1

]T
fqj−1

(19)

for every autonomous switching instant tj , where

l
qj−1

qj ,ξ
:= lqj

(
ξ(x), u

(
ξ(x), λqj

))− lqj−1

(
x, u
(
x, λqj−1

))
(20)

f
ξ,qj−1

qj ,ξ
:= fqj

(
ξ(x), u

(
ξ(x), λqj

))−∇ξfqj−1

(
x, u
(
x, λqj−1

))
(21)

∂c
1,fqj−1
t,x :=

∂

∂t
cqj−1qj (x)−∇cT

qj−1qj
fqj−1

(
x, u
(
x, λqj−1

))
(22)

and where

u(x, λ) := argmin
u∈Uq(t)

Hq(t) (x, λ, u, t) (23)

is used in (20)–(22) for the ease of notation.

B. HMP–MAS Algorithm

The HMP-based Multiple Autonomous Switchings algorithm in [10]
has been originally developed for a class of hybrid systems with the
feature (i) mentioned in Section I, but not covering the features (ii)–(iv).
In this section, we present a generalization of the HMP-MAS algorithm
that covers a general class of hybrid optimal control problems with
the features (i)–(iv), while also making a modification based upon the
explicit expression (19) presented in the previous section.

Let {qi}Li=0 be the given discrete state sequence and let
{(̊ti, x̊qi−1

(̊ti−))}Li=1 be a nominal set of feasible (but not necessarily
optimal) switching times and states. By feasibility we mean that (a) for
every autonomous switching pair, (̊ti, x̊qi−1

(̊ti−)) the corresponding
switching manifold condition mqi−1qi((̊ti, x̊qi−1

(̊ti−))) = 0 is satis-
fied, and (b) for every switching time t̊i+1 the associated preswitching
state x̊qi (̊ti+1−)) is reachable from the previous point, i.e., there exist
some nominal ůs, s ∈ [̊ti, t̊i+1) such that

x̊qi

(̊
ti+1−

)
= ξqi−1qi (̊xqi−1

(̊
ti−
)
+

∫ t̊i+1

t̊i

fqi (̊xs, ůs) ds. (24)

It is, however, not essential in the initiation step to generate
such ůs, s ∈ [̊ti, t̊i+1) and only the reachability of x̊qi (̊ti+1−) from
ξqi−1qi (̊xqi−1

(̊ti−) is a sufficient information.
0) Algorithm Initiation: Fix the termination tolerance εf > 0

sufficiently small, a monotonically nondecreasing sequence of step
sizes {rk} with rk < 1, and set the iteration counter k = 0. Set
tki = t̊i and yk

i = x̊qi−1
(̊ti−)). We also use the notations tk0 = t0,

ξq−1q0(y0) = x0 and tkL+1 = tf .

Fig. 2. Illustration of the notations used for the adjoints and the 
Hamil-tonians at iteration k within the intervals [tik,tik+1).

1) Multiple Two-Point Boundary Value Problems (TP-
BVP): Solve the set of TPBVP associated with each qi−1 over
[tki−1, t

k
i ), i ∈ {1, 2, . . . , L}, with fixed initial and terminal states

ξqi−2qi−1
(yk

i−1) and yk
i , where these TPBVPs are decoupled in the sense

that their adjoint processes and Hamiltonians are not related to each
other. Obtain the initial λk

qi−1
(tki−1), H

k
qi−1

(tki−1) and terminal values
λk
qi−1

(tki ), H
k
qi−1

(tki ) for the adjoints and the Hamiltonians of each of
the decoupled TPBVPs that, for convenience of notation, are denoted
by (see Fig. 2)

λk
i−1 := λk

qi−1
(tki−1) (25)

λ
k

i−1 := λk
qi−1

(tki ) (26)

Hk
i−1 := Hk

qi−1

(
tki−1, ξ(y

k
i−1), u(ξ(y

k
i−1), λ

k
qi−1

(tki−1))
)

(27)

H
k

i−1 := Hk
qi−1

(
tki , y

k
i , u(y

k
i , λ

k
qi−1

(tki ))
)
. (28)

This step requires access to a classical (nonhybrid) but adjoint-based
optimal control solver such as shooting-based methods.

2) Updating Procedure: Obtain new switching pairs from

tk+1
i = tki − rk

(
H

k

i−1 + pki
∂mk

i

∂t
−Hk

i

)
− rkm

k
i

∂mk
i

∂t
(29)

yk+1
i = yk

i − rk

(
∇ξT

i,kλk
i +∇cki + pki ∇mk

i − λ
k

i−1

)
− rkm

k
i ∇mk

i (30)

where

pki =
Hk

i −H
k

i−1 + fT
i−1,k

(
λ
k

i−1 −∇ξT
i,kλk

i −∇cki

)
− ∂ci/∂t

∂mk
i /∂t+ fT

i−1,k∇mk
i

(31)

fi−1,k := fqi−1

(
tki , y

k
i , u(y

k
i , λ

k

i−1)
)

(32)

ξi,k:= ξqi−1qi(y
k
i ) (33)

cki := cqi−1qi(y
k
i ) (34)

mk
i := mqi−1qi(y

k
i ). (35)

The updates (29) and (30) are descent directions for the cost

μk =
L∑

i=1

∥∥∥∥∥
[

H
k

i−1 + pki
∂mk

i
∂t

−Hk
i

∇ξT
i,kλk

i +∇cki + pki ∇mk
i − λ

k

i−1

]∥∥∥∥∥
2

+
∣∣mk

i

∣∣2 (36)

whose minimizer is a set of switching times and pre-switching states
(t∗i , y

∗
i ) that satisfy the HMP conditions, but at intermediate steps

the switching manifold conditions might be violated. See [32] for a
geodesic gradient flow algorithm that overcomes this disadvantage.
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VI. ELECTRIC VEHICLE WITH TRANSMISSION

For the illustration of the representative power of the presented HMP
framework, we study an electric vehicle equipped with a dual planetary
transmission presented in [15] whose hybrid systems formulation is
developed in [17]. While a detailed derivation is presented in [17],
the emphasize in this article is on the control theoretic aspects of the
associated hybrid optimal control problem.

A. Hybrid Systems Presentation of the Powertrain

The automata diagram of powertrain of an EV equipped with a
dual planetary transmission is illustrated in Fig. 1. For this system,
the discrete state set Q = {1,2,3,4,5,6} where the name of modes
are denoted by i instead of qi to avoid ambiguity when referring to qi
as the value of the discrete mode in the time interval [ti, ti+1). The
discrete states 1,2,5,6 correspond to fixed gear ratios, whereas 3,4
represent the system dynamics in transition between gears. The modes
1,3,5 correspond to the operation of the electric motor in low speeds
where the motor torque is limited by a maximum torque constraint and
the modes 2,4,6 correspond to the operation of the electric motor in
high speeds where the motor torque is limited by a maximum power
constraint.

During the transition between the gears, the powertrain possesses
one more degree of freedom than fixed gear ratio modes, and hence
the simplest hybrid state space (with the car velocity as its state
in fixed gear modes and with two independent angular velocities
as the state in the transition modes) gives the hybrid state space
H = {(1,R), (2,R), (3,R2), (4,R2), (5,R), (6,R)}.

The discrete input set Σ = {σ+, σ−, σP , σT } where σ+ leads the
system toward a higher speed gear, σ− directs it toward a lower speed
gear, σP enforces the maximum power constrained operation, and σT

enforces the maximum torque constrained operation.
In the discrete states corresponding to fixed gear ratios, the normal-

ized motor torque is the only input and hence, U1 = U2 = U5 = U6 =
[−1, 1] ⊂ R, where negative values correspond to the regeneration
mode of the electric motor. In the discrete states corresponding to
transition phases, the normalized forces of the two brakes operating
the transmission are inputs, in addition to the motor torque and hence,
U3 = U4 = [−1, 1]× [0, 1]× [0, 1] ⊂ R3 where, obviously, the last
two components of the input corresponding to the brake forces do not
change signs.

The discrete state transition map Γ and the finite automaton A are
illustrated in Fig. 1. As can be observed in this figure, Γ can only make
a discrete state transition in a hybrid state (q, x) if the automaton A can
make the corresponding transition in q.

The elements in the set of vector fields F are given as follows:

f1(x, u) = −A1x
2 +B1u− C1x−D1 (37)

f2(x, u) = −A1x
2 +B1

u

x
− C1x−D1 (38)

f (1)
3 (x, u) = −Assx

(1) +Asrx
(2) −Asa

(
x(1) +R2x

(2)
)2

+Bsmtu
(1) +Bsstu

(2) −Bsrtu
(3) −Dsl

f (2)
3 (x, u) = Arsx

(1) −Arrx
(2) −Ara

(
x(1) +R2x

(2)
)2

+Brmtu
(1) −Brstu

(2) −Brrtu
(3) −Drl (39)

f (1)
4 (x, u) = −Assx

(1) +Asrx
(2) −Asa

(
x(1) +R2x

(2)
)2

+Bsm
u(1)

x(1) +R1x(2)
+Bssu

(2) −Bsru
(3) −Dsl

f (2)
4 (x, u) = Arsx

(1) −Arrx
(2) −Ara

(
x(1) +R2x

(2)
)2

+Brm
u(1)

x(1) +R1x(2)
−Brsu

(2) +Brru
(3) −Drl (40)

f5(x, u) = −A2x
2 +B2u− C2x−D2 (41)

f6(x, u) = −A2x
2 +B2

u

x
− C2x−D2 (42)

where the coefficients A•, B•, C•, D•, and R• in the above-mentioned
equations and r• andk• in the following equations are model parameters
whose numerical values can be found in [17].

The set of jump transition maps Ξ is identified by

ξ12 = ξ21 = idR : x → x (43)

ξ13 = ξ24 : x →
[
r1x
0

]
(44)

ξ31 = ξ42 :

[
x(1)

x(2)

]
→ x(1)

r1
(45)

ξ34 = ξ43 = idR2 :

[
x(1)

x(2)

]
→
[
x(1)

x(2)

]
(46)

ξ35 = ξ46 :

[
x(1)

x(2)

]
→ r2x

(2) (47)

ξ53 = ξ64 : x →
[
0
x
r2

]
(48)

ξ56 = ξ65 = idR : x → x . (49)

While initiations of gear changing can be made freely (and therefore
switchings to 3,4 are controlled), the transitions back to a fixed gear
mode require the full stop for one of the degrees of freedom. Moreover,
switchings between torque-constrained and power-constrained modes
occur whenever the motor speed reaches a certain value. The set of
switching manifolds M for the autonomous switchings are given by

m12 = m21 ≡ {x ∈ R : x− k1 = 0} ∪ {x ∈ R : x+ k1 = 0}
(50)

m31 = m42 ≡ {
x ∈ R2 :

[
0 1
]
x = 0

}
(51)

m34 = m43 ≡ {
x ∈ R2 :

[
1 R1

]
x− k2 = 0

}
∪ {x ∈ R2 :

[
1 R1

]
x+ k2 = 0

}
(52)

m35 = m46 ≡ {
x ∈ R2 :

[
1 0
]
x = 0

}
(53)

m56 = m65 ≡ {x ∈ R : x− k3 = 0} ∪ {x ∈ R : x+ k3 = 0} .
(54)

B. Association of Costs

Depending on the goal, one can associate numerous optimal control
problems for the powertrain. For time optimal tasks, the running costs
shall be taken to be lq(x, u) = 1 for all q ∈ Q ≡ {1,2,3,4,5,6}, so
that once integrated, their sum gives the total spent time (see [17] and
[18] for examples of this class). For the minimization of energy con-
sumption, the running costs shall be taken to be the power consumption
rates that are determined from the motor efficiency map (see [17] for
the derivation and more discussion). The resulting expressions for lq’s
are presented as follows:

l1(x, u) = a1u
2 + b1xu+ c1u+ d1x (55)

l2(x, u) = a1
u2

x2
+ b1u+ c1

u

x
+ d1x (56)

l3(x, u) = atr

(
u(1)
)2

+ btru
(1)
(
x(1) +R1x

(2)
)

+ ctru
(1) + dtr

(
x(1) +R1x

(2)
)

(57)

l4(x, u) = atr

(
u(1)
)2

(x(1) +R1x(2))
2 + btru

(1)
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+ ctr
u(1)

x(1) +R1x(2)
+ dtr

(
x(1) +R1x

(2)
)

(58)

l5(x, u) = a2u
2 + b2u+ c2x+ d2x (59)

l6(x, u) = a2
u2

x2
+ b2u+ c2

u

x
+ d2x . (60)

For time optimal goals, one can associate (potentially state-
dependent) switching costs by considering unaccounted delays in
switching. For energy optimal goals, switching costs represent the
energy consumption of the mechanism performing the engagement
and release of the lock holding the stationary parts fixed. While the
HMP framework permits a wide range of nonlinear costs that depend
on the rotational speed of transmission elements (gears), we consider a
quadratic model fit, i.e.,

c13(x) = c24(x) = c53(x) = c64(x) = η0 + η1x+ η2x
2 (61)

c31(x) = c42(x) = η′
0 + η′

1x
(1) + η′

2(x
(1))2 (62)

c35(x) = c46(x) = η′′
0 + η′′

1x
(2) + η′′

2(x
(2))2. (63)

Notice that the switching cost in (62) contains only the first compo-
nent of the state x(1) because the second component x(2) corresponds
to the speed of the common ring gear in the transmission vanishes as
it needs to come to a full stop for the switching to occur. Similarly,
(63) contains only the second component of the state x(2) because
the common sun gear needs to come to a full stop at these switching
instances. For the numerical simulations in this section, we assume a
quadratic representation for the terminal cost

g (x (tf )) = α0 + α1x (tf ) + α2x (tf )
2 (64)

while any nonlinear representation satisfying A3 is also permitted.

C. HMP Formulation

We consider the energy consumption minimization for acceleration
in the first gear from the stationary state, i.e., h0 ≡ (q, x)(t0) = (1, 0)
for a period of 2 s, i.e., [t0, tf ] = [0, 2]. We would like. to perform a gear
change to the second gear ratio, which corresponds to 6 since we know
the vehicle’s speed exceeds 12m/s = 43.2km/h that results in the
operation of the electric motor in the power constrained region. Based
upon the hybrid automata in Fig. 1, potential sequences of lengthL = 4
for the discrete state are 1356, 1246, 1346. Thus, the HMP needs to
be solved three times (one for each sequence) in order to determine the
global optimal sequence together with the associated inputs. It turns out
that (see [17]) 1246 is the optimal sequence and hence, we present the
analysis only for this sequence, while the results for other sequences
follow the same derivation.

1) Formation of the Hamiltonians: The family of system
Hamiltonians are formed as follows:

H1 (x, λ, u) = λ
(−A1x

2 +B1u− C1x−D1

)
+ a1u

2 + b1xu+ c1u+ d1x (65)

H2 (x, λ, u) = λ
(
−A1x

2 +B1
u

x
− C1x−D1

)

+ a1
u2

x2
+ b1u+ c1

u

x
+ d1x (66)

H4 (x, λ, u) =

(
−Assx

(1) +Asrx
(2) −Asa

(
x(1) +R2x

(2)
)2

+Bsm
u(1)

x(1) +R1x(2)
+Bssu

(2) −Bsru
(3) −Dsl

)
λ(1)

+

(
Arsx

(1) −Arrx
(2) −Ara

(
x(1) +R2x

(2)
)2

+Brm
u(1)

x(1) +R1x(2)
−Brsu

(2) +Brru
(3) −Drl

)
λ(2)

+ atr

(
u(1)
)2

(x(1) +R1x(2))
2 + btru

(1) + ctr
u(1)

x(1) +R1x(2)

+ dtr
(
x(1) +R1x

(2)
)

(67)

H6 (x, λ, u) = λ
(
−A2x

2 +B2
u

x
− C2x−D2

)

+ a2
u2

x2
+ b2u+ c2

u

x
+ d2x . (68)

2) Hamiltonian Minimization:: The Hamiltonian minimiza-
tion condition (11) for the Hamiltonians (65)–(68) determines the
optimal inputs as follows:

u1(t) = sat
[−1,1]

(− (b1x(t) + c1 +B1λ(t))

2a1

)
(69)

u2(t) = sat
[−1,1]

(−x(t) (b1x(t) + c1 +B1λ(t))

2a1

)
(70)

u(1)
4 (t) =

sat
[−1,1]

(−XM (t)
[
btrXM (t) + ctr +Bsmλ

(1)

(t) +Brmλ
(2)

(t)

]
2atr

)

u(2)
4 (t) =

{−1 if Bssλ
(1)(t)−Brsλ

(2)(t) ≥ 0
0 if Bssλ

(1)(t)−Brsλ
(2)(t) < 0

(71)

u(3)
4 (t) =

{−1 if Brrλ
(2)(t)−Bsrλ

(1)(t) ≥ 0
0 if Brrλ

(2)(t)−Bsrλ
(1)(t) < 0

u6(t) = sat
[−1,1]

(−x(t) (b2x(t) + c2 +B2λ(t))

2a2

)
(72)

where x(t) ≡ xo
qi
(t) and XM (t) := (x(1)(t) +R1x

(2)(t)) are em-
ployed to shorten the notation.

3) Adjoint Dynamics: The dynamics of the (backward) adjoint
processes are derived from (13) as follows:

λ̇1 = −b1u
o
1(t)− d1 + λ1(t) (2A1x1(t) + C1) (73)

λ̇2 =
2a1 (u

o
2(t))

2

(x2(t))
3 +

c1u
o
2(t)

(x2(t))
2 − d1

+ λ2(t)

(
2A1x2(t) +B1

uo
2(t)

(x2(t))
2 + C1

)
(74)

λ̇(1)
4 =

2atr

(
u
o(1)
4 (t)

)2
(x(1) +R1x(2))

3 +
ctru

o(1)
4 (t)

(x(1) +R1x(2))
2 − dtr

+λ(1)
4

(
Ass + 2Asa

(
x(1) +R2x

(2)
)
+

Bsmu
o(1)
4

(x(1) +R1x(2))
2

)

+λ(2)
4

(
−Ars + 2Ara

(
x(1) +R2x

(2)
)
+

Brmu
o(1)
4

(x(1) +R1x(2))
2

)

(75)

λ̇(2)
4 =

⎛
⎜⎝2R1atr

(
u
o(1)
4 (t)

)2
(x(1) +R1x(2))

3 +
R1ctru

o(1)
4 (t)

(x(1) +R1x(2))
2 −R1dtr

⎞
⎟⎠

+λ(1)
4

(
−Asr + 2R2Asa

(
x(1)+R2x

(2)
)
+

R1Bsmu
o(1)
4

(x(1) +R1x(2))
2

)
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+λ(2)
4

(
Arr + 2R2Ara

(
x(1) +R2x

(2)
)
+

R1Brmu
o(1)
4

(x(1) +R1x(2))
2

)

(76)

λ̇6 =
2a2 (u

o
6(t))

2

(x6(t))
3 +

c2u
o
6(t)

(x6(t))
2 − d2

+ λ6(t)

(
2A2x6(t) +B2

uo
6(t)

(x6(t))
2 + C2

)
. (77)

4) Adjoint Boundary Conditions: The terminal and boundary
conditions for the adjoint process from (16) and (17) are

λ1 (ts1) = λ2 (ts1+) + p1 (78)

λ2 (ts2) =
[
r1 0

] [ λ
(1)
4 (ts2+)

λ
(2)
4 (ts2+)

]
+ η1 + 2η2x (ts2−)

= r1λ
(1)
4 (ts2+) + η1 + 2η2x (ts2−) (79)

λ4 (ts3) =

[
0
r2

]
λ6

(
t+s3
)
+ p3

[
1
0

]
+

[
0

η′′
1 + 2η′′

2x
(
t−s3
) ]

=

[
p3

r2λ6 (ts3+) + η′′
1 + 2η′′

2x (ts3−)

]
(80)

λ6 (tf ) = α1 + 2α2x (tf ) . (81)

5) State Process: The optimal state process is obtained by the
substitution of the optimal inputs (69)–(73) into the vector fields (37),
(38), (40), and (42). The resulting set of differential equations, which
are coupled to the adjoint dynamics (74)–(78) due to the presence of λ
in the inputs (69)–(73), i.e.,

ẋq =
∂Hq

∂λq

≡ fq
(
xq(t), u

o
q(xq(t), λq(t))

)
, q = 1,2,4,6

(82)
and are subject to the initial and boundary conditions

x1 (t0) = 0 (83)

x2 (ts1) = x1 (ts1−) (84)

x4 (ts2) ≡
[
x
(1)
4 (ts2)

x
(2)
4 (ts2)

]
=

[
r1x2 (ts2−)

0

]
(85)

x6 (ts3) = r2 x
(2)
4 (ts3−) . (86)

Moreover, the switching manifold condition must be satisfied at the
autonomous switching instances ts1 , ts3 , i.e.,

x1 (ts1−) = k1 (87)

x(1)
4 (ts3−) = 0 . (88)

6) Hamiltonian Boundary Conditions: The Hamiltonian
boundary conditions (18) at the optimal switching instances ts1 , ts2 ,
ts3 turn into continuity conditions

Hq

(
xq, λq, u

o
q (xq, λq)

)
= Hq′

(
xq′ , λq′ , u

o
q′ (xq′ , λq′)

)
(q, q′)ts1= (1,2), (q, q′)ts2= (2,4), (q, q′)ts3= (4,6). (89)

A detailed representation of these conditions can be found in [17].
7) Numerical Results: For the 10 (scalar) ODEs (83), (78)–

(74), the three a priori unknown switching instances ts1 , ts2 , ts3 and
the two unknown auxiliary parameters p1, p3 there are 15 equations
provided by (84)–(87), (82)–(79), (90) in the form of initial, boundary,
and terminal conditions. It is not difficult to show that for the parameter
values in [15]–[17], [43], the necessary optimality conditions of the
HMP in the form of the above-mentioned set of multiple-point bound-
ary value differential equations uniquely identify optimal inputs and
the corresponding optimal trajectories. The results are illustrated in

Fig. 3. HMP-based solution of the minimum energy acceleration prob-
lem for an electric vehicle with a dual planetary transmission. (a) Evolu-
tion of the (optimal) state x, adjoint process λ, optimal input u, and the
Hamiltonian H over time. Due to the relatively large values of the state
x4 = (x

(1)
4 , x

(2)
4 )T, the scaled values 1

r1
x
(1)
4 and r2x

(2)
4 with r1 = 200

and r2 = 0.02 are displayed for better illustration. (b) Satisfaction of
adjoint boundary conditions (81) and (80), which are accompanied by
dimension-changes. For better illustration of the equalities, state invari-
ant switching costs c24 = c46 = η0 are considered and instead of the

adjoint components λ4 = (λ
(1)
4 , λ

(2)
4 )T, the scaled values r1λ

(1)
4 and

1
r2

λ
(2)
4 are displayed.
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Fig. 3(a). In order to illustrate the satisfaction of the adjoint boundary
conditions (81) and (80), the components λ(1) and λ(2) of the adjoint
process in t ∈ [ts2 , ts3 ] are multiplied by r1 and 1

r2
, respectively, and

are in-zoomed in Fig. 3(b). Interested readers are referred to [17] for
more details on derivations and discussions on the results.
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