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On the Hybrid Minimum Principle:
The Hamiltonian and Adjoint Boundary Conditions

Ali Pakniyat, Member, IEEE, and Peter E. Caines, Life Fellow, IEEE

Abstract— The Hybrid Minimum Principle (HMP) is presented
for the optimal control of deterministic hybrid systems with both
autonomous and controlled switchings and jumps where state
jumps at the switching instants are permitted to be accompanied
by changes in the dimension of the state space. A feature of
particular importance is the explicit presentation of the bound-
ary conditions on the Hamiltonians and the adjoint processes
before and after switchings and jumps. The numerical benefit of
these expressions are demonstrated on a modified version of the
Multiple Autonomous Switchings (MAS) algorithm. The results are
illustrated for the hybrid model of an electric vehicle powertrain
with a two-speed transmission.

Index Terms— Hybrid systems, Minimum Principle,
nonlinear control systems, optimal control, Pontryagin
Maximum Principle

I. INTRODUCTION

ONE of the principal approaches in solving optimal control
problems is the Minimum Principle (MP), also called the

Maximum Principle in the pioneering work of Pontryagin et al. [1],
that provides a set of necessary conditions that must be satisfied by
all optimal processes. This principle states that along optimal state
processes there exist adjoint processes such that their joint governing
dynamics possess a Hamiltonian canonical form and that the optimal
input process is the pointwise minimizer (or the maximizer depending
on the sign convention) of the Hamiltonian function. In other words,
the significance of the MP is that it turns the “cost functional
minimization” (over the infinite dimensional space of input processes)
into a “Hamiltonian function minimization” (over the pointwise value
of the input), based upon solutions of a set of two-point boundary
value ordinary differential equations.

The Minimum Principle, as indicated by the name, is a principle,
i.e. a not yet completely precise statement that requires technical
conditions to be stated as a theorem [2]. For control systems with
continuous dynamics these technical conditions are mostly on the
regularity requirements (as, e.g., indicated in [3] they are joint
conditions on [continuous] state and input processes). For hybrid
control systems, however, further technical conditions need to be
imposed on interactions of the continuous and discrete subsystems.
Various versions of the MP for hybrid systems are available in the
control theory literature [4]–[14]. However, they do not exhaust the
full power of the principle. In particular, (i) the presence of both
autonomous and controlled switchings, (ii) the possibility of jumps
in the state at switching instances, (iii) the possibility of dimension
changes in the state space, and (iv) the consideration of switching
costs together with running and terminal costs, are characteristics of
which only strict subsets have appeared in the literature.

However, there are several engineering systems that exhibit the
features (i)–(iv) above in entirety, or with combinations for which
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a version of the MP is not immediately available. As an important
example, one can refer to the control of electric vehicles equipped
with a dual-stage planetary transmission studied in [15]–[18] whose
associated hybrid optimal control problem is presented in this paper
as well. Similar characteristics appear in the extention of this work
to stochastic hybrid systems [19] and in Hybrid Mean Field Games
theory and applications [20], [21] where an agent’s state extended
by the mean field terms (associated with active agents) undergoes
dimension changes when a group of agents join or leave the popula-
tion, and where the terminal cost of the leaving agents constitutes a
switching cost for the population’s mean field.

The primary objective of this paper is the presentation of a
general version of the Hybrid Minimum Principle (HMP) for de-
terministic systems that captures all characteristics (i)–(iv) above.
The regularity assumptions on the continuous dynamics are minimal
and imposed primarily to ensure the existence and uniqueness of
solutions as well as continuous dependence on initial conditions
[22]–[24]. Further generalizations such as the lying of the system’s
vector fields in Riemannian spaces [14], nonsmooth assumptions [4],
[5], state-dependence of the control value sets [8], and interactions
with stochastic subsystems [19], as well as restrictions to certain
subclasses, such as those with regional dynamics [25], [26], and
with specified families of jumps [27]–[30], become possible through
variations and extensions of the framework presented here.

The secondary objective of this work is the explicit expression of
the boundary conditions on the Hamiltonians and adjoint processes
in contrast to their implicit expressions in the literature in the form
of the so-called transversality conditions. This provides a potential
to improve the performance of numerical algorithms (e.g. [10], [31]–
[40]) that satisfy the Hamiltonian continuity condition implicitly.

The tertiary objective of this note is to illustrate the theoretical
results by means of a worked out example of energy minimization
for an electric vehicle whose study requires the features (i), (ii) and
(iii) above, due to the addition of a multi-speed transmission. More
specifically, feature (i) is a necessity since the initiation of gear
changing is a controlled switching while the termination of a gear
changing process requires the satisfaction of full stop conditions for
certain rotary elements, hence is an autonomous switching. Moreover,
(ii) and (iii) are essential due to the possession of different mechanical
degrees of freedom in each mode and the relationships between the
generalized coordinates in each of those modes. Last but not least, the
accommodation of (iv) permits the study of hybrid optimal control
problems associated with the minimization of the total energy for
the acceleration and deceleration of the vehicle with switching costs
representing the energy consumption and losses contributed by the
electronics operating the locks and brakes inside the transmission
mechanism. Further analytic examples can be found in [41]–[43].

The organisation of the paper is as follows. The definition of hybrid
systems and the associated class of hybrid optimal control prob-
lems are, respectively, presented in Sections II and III. The Hybrid
Minimum Principle is presented in Section IV in the conventional
Hamiltonian canonical form and with boundary conditions in the
generalized transversality form. In Section V an explicit expression
for the transversality conditions is presented based upon which a
modified version of the Multiple Autonomous Switchings (MAS)
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algorithm is presented. The representative power of the theoretical
framework and the implementation steps of the HMP results are
illustrated in Section VI where the energy consumption minimization
for an EV equipped with a particular transmission is studied.

II. HYBRID SYSTEMS

A (deterministic) hybrid system H is a septuple

H = {H, I,Γ, A, F,Ξ,M} (1)

where the symbols in the expression and their governing assumptions
are defined as below.
A0: H :=

∐
q∈Q Rnq is called the (hybrid) state space of the

hybrid system H, where
∐

denotes disjoint union, i.e.
∐
q∈Q Rnq =⋃

q∈Q
{

(q, x) : x ∈ Rnq
}

, where

Q = {1,2, ..., |Q|} ≡
{
q(1), q(2), ..., q(|Q|)

}
, with |Q| <∞, is

a finite set of discrete states (components), and
{Rnq}q∈Q is a family of finite dimensional continuous state

spaces, where nq ≤ n <∞ for all q ∈ Q.
I := Σ× U is the set of system input values, where
Σ with |Σ| < ∞ is the set of discrete state transition and

continuous state jump events extended with the identity element,
U = {Uq}q∈Q is the set of admissible (continuous) control values,

where each Uq ⊂ Rmq is a compact set in Rmq .
The set of admissible (continuous) control inputs U (U) :=

L∞ ([t0, T∗) , U), is defined to be the set of all measurable functions
that are bounded up to a set of measure zero on [t0, T∗), T∗ <∞,
where the boundedness property necessarily holds here since admis-
sible inputs take values in the compact set U .

Γ : H ×Σ→ H is a time independent (partially defined) discrete
state transition map.

Ξ : H × Σ → H is a time independent (partially defined)
continuous state jump transition map. For all ξ ∈ Ξ, the functions
ξσ ≡ ξ(·, σ) : Rnq → Rnp , p ∈ A (q, σ) are assumed to be
continuously differentiable in the continuous state x ∈ Rnq .
A : Q × Σ → Q denotes both a deterministic finite automaton

and the automaton’s associated transition function on the state space
Q and event set Σ, such that for a discrete state q ∈ Q only the
discrete controlled and uncontrolled transitions into the q-dependent
subset {A (q, σ) , σ ∈ Σ} ⊂ Q occur under the projection of Γ on
its Q components: Γ : Q× Rn × Σ→ H|Q. In other words, Γ can
only make a discrete state transition in a hybrid state (q, x) if the
automaton A can make the corresponding transition in q.
F is an indexed collection of vector fields {fq}q∈Q such

that for each q ∈ Q there exist kfq ≥ 1 for which

fq ∈ C
kfq (Rnq × Uq → Rnq ) satisfies a joint uniform Lip-

schitz condition, i.e., there exists Lf < ∞ such that
‖fq (x1, u1)− fq (x2, u2)‖ ≤ Lf (‖x1 − x2‖+ ‖u1 − u2‖) for all
x, x1, x2 ∈ Rnq , u, u1, u2 ∈ Uq .
M = {mα : α ∈ Q×Q} denotes a collection of switching

manifolds such that, for any ordered pair α ≡ (α1, α2) = (q, r), mα

is a smooth, i.e. C∞ codimension 1 sub-manifold of Rnq , described
locally by mα = {x : mα (x) = 0}, and possibly with boundary
∂mα. It is assumed that mα ∩ mβ = ∅, whenever α1 = β1 but
α2 6= β2, for all α, β ∈ Q×Q. �

Switching manifolds will function in such a way that whenever a
trajectory governed by the controlled vector field meets the switching
manifold transversally there is an autonomous switching to another
controlled vector field or there is a jump transition in the continuous
state component, or both. A transversal arrival on a switching
manifold mq,r , at state xq ∈ mq,r = {x ∈ Rnq : mq,r (x) = 0}
occurs whenever

∇mq,r (xq)
Tfq (xq, uq) 6= 0, (2)

ẋ = f1(x, u) ẋ = f2(x, u)

ẋ(1) = f
(1)
3 (x, u)

ẋ(2) = f
(2)
3 (x, u)

ẋ(1) = f
(1)
4 (x, u)

ẋ(2) = f
(2)
4 (x, u)

ẋ = f5(x, u) ẋ = f6(x, u)

m12(x) = 0→ σP

σT ← m21(x) = 0

σ+

m
3
1

(x
)

=
0
→
σ
−

σ+

m
4
2

(x
)

=
0
→
σ
−

m34(x) = 0→ σP

σT ← m43(x) = 0

m56(x) = 0→ σP

σT ← m65(x) = 0

m
3
5

(x
)

=
0
→
σ

+

σ−

m
4
6

(x
)

=
0
→
σ

+

σ−

Fig. 1: The hybrid Automata diagram for the transmission-equipped
electric vehicle in [15], [17] that serves as an example in Section VI.

for uq ∈ Uq , and q, r ∈ Q. It is assumed that:
A1: The initial state h0 := (q0, x (t0)) ∈ H is such that
mq0,qj (x0) 6= 0, for all qj ∈ Q. �

A hybrid input process defined over
[
t0, tf

)
, tf < ∞ is denoted

by IL = (SL,u), where SL =
(

(t0, σ0) , (t1, σ1) , · · · , (tL, σL)
)
,

L < ∞, is a finite hybrid sequence of switching events with
τL := {t0, t1, t2, . . . , tL} a strictly increasing sequence of times,
σi ∈ Σ, i ∈ {1, 2, · · · , L}, with σ0 = id, an admissible language
of the automata A, and u ≡

{
uq0 ,uq1 , . . . ,uqL

}
∈ U , with

uqi ∈ L∞ ([ti, ti+1) , Uqi) and admissible input. such that the
associated hybrid state trajectory satisfies:

A. Continuous State Dynamics
The continuous component of the hybrid state

x =
{
xq0 (·) , xq1 (·) , . . . , xqL (·)

}
is a piecewise continuous

function which is almost everywhere differentiable and on each time
segment specified by τL satisfies the dynamical equation

ẋqi (t) = fqi (xqi (t) , u (t)), a.e. t ∈ [ti, ti+1), (3)

with the initial conditions

xq0 (t0) = x0 (4)

xqi (ti) = ξqi−1qi

(
xqi−1 (ti−)

)
:= ξqi−1qi

(
lim
t↑ti

xqi−1 (t)
)

(5)

B. Autonomous Discrete Transition Dynamics
An autonomous (uncontrolled) discrete state transition from qi−1

to qi together with a continuous state jump ξqi−1qi occurs at the
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autonomous switching time ti if xqi−1 (ti−) := limt↑ti xqi−1 (t)
satisfies a switching manifold condition of the form

mqi−1qi

(
xqi−1 (ti−) , ti

)
= 0 (6)

for qi ∈ Q, where mqi−1qi (x) = 0 defines a (qi−1, qi) switching
manifold and it is not the case that either (i) x (ti−) ∈ ∂mqi−1qi or
(ii) fqi−1 (x (ti−) , u (ti−)) ⊥ ∇mqi−1qi (x (ti−)), i.e. ti is not
a manifold termination instant (see [44]). With the assumptions A0
and A1 in force, such a transition is well defined and labels the event
σqi−1qi ∈ Σ, that corresponds to the hybrid state transition

h (ti) ≡ (qi, xqi (ti))

=
(
Γ
(
qi−1, xqi−1 (ti−) , σi

)
, ξqi−1qi

(
xqi−1 (ti−)

))
(7)

C. Controlled Discrete Transition Dynamics

A controlled discrete state transition together with a controlled
continuous state jump ξqi−1qi occurs at the controlled discrete event
time ti if ti is not an autonomous discrete event time and if there
exists a controlled discrete input event σqi−1qi ∈ Σ for which

h (ti) ≡ (qi, xqi (ti))

=
(
Γ
(
qi−1, xqi−1 (ti−) , σi

)
, ξqi−1qi

(
xqi−1 (ti−)

))
(8)

with
(
ti, σqi−1qi

)
∈ SL and qi ∈ A (qi−1). �

A2: For a specified sequence of discrete states {qi}Li=0, the class
of admissible input-state trajectories is non-empty. �

Theorem 2.1. [44] A hybrid system H with an initial hybrid state
(q0, x0) satisfying assumptions A0, A1 and A2 possesses a unique
hybrid input-state trajectory on [t0, T∗∗), where T∗∗ is the least of

(i) T∗ ≤ ∞, where [t0, T∗) is the temporal domain of the definition
of the hybrid system,

(ii) a manifold termination instant T∗ of the trajectory
h (t) = h (t, (q0, x0) , (SL, u)), t ≥ t0, at which either
x (T∗−) ∈ ∂mq(T∗−)q(T∗) or fq(T∗−) (x (T∗−) , u (T∗−)) ⊥
∇mq(T∗−)q(T∗) (x (T∗−)). �

We note that Zeno times, i.e. accumulation points of discrete
transition times, are ruled out by A2.

III. HYBRID OPTIMAL CONTROL PROBLEMS

A3: Let {lq}q∈Q, lq ∈ Cnl (Rn × U → R+), nl ≥ 1, be a family
of running cost functions; {cσ}σ∈Σ, cσ ∈ Cnc (Rn × Σ→ R+),
nc ≥ 1, be a family of switching cost functions; and {gq}q∈Q,
gq ∈ Cng (Rn → R+), ng ≥ 1, be a family of terminal cost
functions satisfying the following assumptions:

(i) There exists Kl < ∞ and 1 ≤ γl < ∞ such that
|lq (x, u)| ≤ Kl

(
1 + ‖x‖γl

)
and |lq (x1, u1)− lq (x2, u2)| ≤

Kl (‖x1 − x2‖+ ‖u1 − u2‖), for all q ∈ Q, x ∈ Rnq , u ∈
Uq .

(ii) There exists Kc < ∞ and 1 ≤ γc < ∞ such that |cσ (x)| ≤
Kc
(
1 + ‖x‖γc

)
, σ ∈ Σ, σ1 = q, x ∈ Rnq .

(iii) There exists Kg < ∞ and 1 ≤ γg < ∞ such that |gq (x)| ≤
Kg
(
1 + ‖x‖γg

)
, q ∈ Q, x ∈ Rnq . �

Consider the initial time t0, final time tf <∞, and initial hybrid
state h0 = (q0, x0). With the number of switchings L held fixed,
the set of all hybrid input trajectories with exactly L switchings
is denoted by IL. Let IL ∈ IL be a hybrid input trajectory that
by Theorem 2.1 results in a unique hybrid state process. Then

hybrid performance functions for the corresponding hybrid input-state
trajectory are defined as

J
(
t0, tf , h0, L; IL

)
:=

L∑
i=0

∫ ti+1

ti

lqi (xqi(s), u(s), s) ds

+

L∑
j=1

cqj−1qj

(
tj , xqj−1

(
tj−

))
+ g

(
xqL

(
tf
))

(9)

IV. THE HYBRID MINIMUM PRINCIPLE (HMP)
Theorem 4.1 ([45]). Consider the hybrid system H subject to
assumptions A0-A3, and the HOCP with the hybrid performance
function (9). Define the family of system Hamiltonians by

Hq (xq, λq, uq, t) = lq (xq, uq, t) + λTq fq (xq, uq, t) , (10)

xq, λq ∈ Rnq , uq ∈ Uq , q ∈ Q, and let {qi}Li=0 be a specified
sequence of discrete states with its associated set of switchings.
Then for an optimal input uo and along the corresponding optimal
trajectory xo, there exists an adjoint process λo such that

Hq
(
xoq , λ

o
q , u

o
q , t
)
≤ Hq

(
xoq , λ

o
q , v, t

)
, (11)

for all v ∈ Uq , where (xo, λo) satisfy

ẋoq =
∂Hq
∂λq

(xoq , λ
o
q , u

o
q , t) ≡ fq(xoq , uoq , t), (12)

λ̇oq = −∂Hq
∂xq

(xoq , λ
o
q , u

o
q , t)

≡ −∂lq
∂x

(xoq , u
o
q , t)−

∂fq
∂x

(xoq , u
o
q , t)

Tλoq , (13)

almost everywhere t ∈
[
t0, tf

]
, subject to

xoq0 (t0) = x0, (14)

xoqj
(
tj
)

= ξqj−1qj

(
xoqj−1

(tj−)
)
, (15)

λoqL(tf ) = ∇g
(
xoqL(tf )

)
, (16)

λoqj−1
(tj−) ≡ λoqj−1

(tj) = ∇ξTqj−1qjλ
o
qj (tj+)

+∇cqj−1qj + pj∇mqj−1qj , (17)

where pj ∈ R when tj indicates the time of an au-
tonomous switching, subject to the switching manifold condition
mqj−1qj

(
xoqj−1

(tj−)
)

= 0, and pj = 0 when tj indicates the time
of a controlled switching. Moreover, the Hamiltonian satisfies

Hqj−1

(
tj−

)
≡ Hqj−1

(
xoqj−1

, λoqj−1
, uoqj−1

, toj−
)

= Hqj

(
xoqj , λ

o
qj , u

o
qj , t

o
j+
)
−
∂cqj−1qj

∂t
− pj

∂mqj−1qj

∂t

≡ Hqj
(
tj+

)
−
∂cqj−1qj

∂t
− pj

∂mqj−1qj

∂t
. (18)

at both autonomous and controlled switching instants tj �

V. EXPLICIT EXPRESSIONS AND THE ASSOCIATED
HMP–MAS ALGORITHM

Let N :=
∑L
i=0 nqi . We remark that in the forward-backward

ODEs (ordinary differential equations) (12) and (13), there is a total
of 2N state-type components for which N initial conditions are
provided by (14) and (15) and N terminal conditions are provided by
(16) and (17). There are also L unknown (not apriori fixed) values
for tj for which there are L algebraic conditions provided by (18).
Moreover, for every case of an autonomous switching, there is an
unknown scalar pj whose values can be uniquely determined from
the simultaneous solution of the set of equations together with the
set of constraints imposed by (6) whose count is the same as the
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number of the unknown values of pj ’s. Hence, the set of necessary
conditions in the HMP is complete in the sense that the number
of unknowns match the number of conditions they must satisfy.
However, the implicit determination of pj ’s from the holistic set
of differential-algebraic equations might not translate well in some
numerical solution methodologies.

A. Explicit Expressions for the Hamiltonians and the Adjoints
Boundary Conditions

As obtained in the authors’ proof of the HMP (see e.g. [45]), the
scalar pj in the adjoint boundary conditions (17) and the Hamiltonian
boundary conditions can be alternatively determined from

pj :=
l
qj−1

qj ,ξ
+ λTqj f

ξ,qj−1

qj ,ξ
− ∂c

1,fqj−1
t,x

∂mqj−1qj
∂t +

[
∂mqj−1qj
∂xqj−1

]T
fqj−1

(19)

for every autonomous switching instant tj , where

l
qj−1

qj ,ξ
:= lqj

(
ξ(x), u

(
ξ(x), λqj

))
− lqj−1

(
x, u

(
x, λqj−1

))
(20)

f
ξ,qj−1

qj ,ξ
:= fqj

(
ξ(x), u

(
ξ(x), λqj

))
−∇ξfqj−1

(
x, u

(
x, λqj−1

))
(21)

∂c
1,fqj−1
t,x :=

∂

∂t
cqj−1qj (x)−∇cTqj−1qj fqj−1

(
x, u

(
x, λqj−1

))
(22)

and where
u(x, λ) := argmin

u∈Uq(t)

Hq(t) (x, λ, u, t) (23)

is used in equations (20), (21) and (22) for the ease of notation.

B. The HMP–MAS Algorithm

The HMP-based Multiple Autonomous Switchings (MAS) Algo-
rithm has been proposed in [10]. This algorithm has been originally
developed for a class of hybrid systems with the feature (i) mentioned
in Section I, but not covering the features (ii), (iii) and (iv). In this
section, we present a generalization of the HMP-MAS algorithm that
covers a general class of hybrid optimal control problems with the
features (i) to (iv), while also making a modification based upon the
explicit expression (19) presented in the previous section.

Let {qi}Li=0 be the given discrete state sequence and let
{(̊ti, x̊qi−1 (̊ti−))}Li=1 be a nominal set of feasible (but not
necessarily optimal) switching times and states. By feasibil-
ity we mean that (a) for every autonomous switching pair,
(̊ti, x̊qi−1 (̊ti−)) the corresponding switching manifold condition
mqi−1qi((̊ti, x̊qi−1 (̊ti−))) = 0 is satisfied, and (b) for every
switching time t̊i+1 the associated pre-switching state x̊qi (̊ti+1−))
is reachable from the previous point, i.e. there exist some nominal
ůs, s ∈ [̊ti, t̊i+1) such that

x̊qi
(̊
ti+1−

)
= ξqi−1qi (̊xqi−1

(̊
ti−
)

+

∫ t̊i+1

t̊i

fqi (̊xs, ůs) ds (24)

It is, however, not essential in the initiation step to generate such
ůs, s ∈ [̊ti, t̊i+1) and only the reachability of x̊qi

(̊
ti+1−

)
from

ξqi−1qi (̊xqi−1

(̊
ti−
)

is a sufficient information.
0) Algorithm Initiation: Fix the termination tolerance εf > 0

sufficiently small, a monotonically non-decreasing sequence of step
sizes {rk} with rk < 1, and set the iteration counter k = 0. Set
tki = t̊i and yki = x̊qi−1 (̊ti−)). We also use the notations tk0 = t0,
ξq−1q0(y0) = x0 and tkL+1 = tf .

tki−1

λ
k
i−2

H
k
i−2

∣∣∣∣∣ λki−1

Hk
i−1

tki

λ
k
i−1

H
k
i−1

∣∣∣∣∣ λki
Hk
i

tki+1

λ
k
i

H
k
i

∣∣∣∣∣ λki+1

Hk
i+1

Fig. 2: Illustration of the notations used for the adjoints and the
Hamiltonians at iteration k within the intervals [tki , t

k
i+1).

1) Multiple Two-Point Boundary Value Problems (TPBVP):
Solve the set of two-point boundary value problems (TPBVP) as-
sociated with each qi−1 over [tki−1, t

k
i ), i ∈ {1, 2, · · · , L}, with

fixed initial and terminal states ξqi−2qi−1(yki−1) and yki , where
these TPBVPs are decoupled in the sense that their adjoint pro-
cesses and Hamiltonians are not related to each other. Obtain the
initial λkqi−1

(tki−1), Hk
qi−1

(tki−1) and terminal values λkqi−1
(tki ),

Hk
qi−1

(tki ) for the adjoints and the Hamiltonians of each of the
decoupled TPBVPs that, for convenience of notation, are denoted
by (see also Figure 2)

λki−1 := λkqi−1
(tki−1) (25)

λ
k
i−1 := λkqi−1

(tki ) (26)

Hk
i−1 := Hk

qi−1

(
tki−1, ξ(y

k
i−1), u(ξ(yki−1), λkqi−1

(tki−1))
)

(27)

H
k
i−1 := Hk

qi−1

(
tki , y

k
i , u(yki , λ

k
qi−1

(tki ))
)

(28)

This step requires access to a classical (non-hybrid) but adjoint-
based optimal control solver such as shooting-based methods.

2) Updating Procedure: Obtain new switching pairs from

tk+1
i = tki − rk

(
H
k
i−1 + pki

∂mk
i

∂t
−Hk

i

)
− rkmk

i
∂mk

i

∂t
(29)

yk+1
i = yki − rk

(
∇ξTi,kλ

k
i +∇cki + pki∇m

k
i − λ

k
i−1

)
− rkmk

i∇m
k
i (30)

where

pki =
Hk
i −H

k
i−1 + fTi−1,k

(
λ
k
i−1 −∇ξTi,kλ

k
i −∇c

k
i

)
− ∂ci/∂t

∂mk
i /∂t+ fTi−1,k∇m

k
i

(31)

fi−1,k := fqi−1

(
tki , y

k
i , u(yki , λ

k
i−1)

)
(32)

ξi,k := ξqi−1qi(y
k
i ) (33)

cki := cqi−1qi(y
k
i ) (34)

mk
i := mqi−1qi(y

k
i ) (35)

The updates (29) and (30) are descent directions for the cost

µk =

L∑
i=1

∥∥∥∥∥∥
 H

k
i−1 + pki

∂mk
i

∂t −H
k
i

∇ξTi,kλ
k
i +∇cki + pki∇m

k
i − λ

k
i−1

∥∥∥∥∥∥
2

+
∣∣∣mk

i

∣∣∣2
(36)

whose minimizer is a set of switching times and pre-switching states
(t∗i , y

∗
i ) that satisfy the HMP conditions, but at intermediate steps

the switching manifold conditions might be violated. See [32] for a
geodesic gradient flow algorithm that overcomes this disadvantage.

VI. ELECTRIC VEHICLE WITH TRANSMISSION

For the illustration of the representative power of the presented
HMP framework, we study an electric vehicle equipped with a
dual planetary transmission presented in [15] whose hybrid systems
formulation is developed in [17]. While a detailed derivation is
presented in [17], in this paper the emphasise is on the control
theoretic aspects of the associated hybrid optimal control problem.
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A. Hybrid Systems Presentation of the Powertrain

The Automata diagram of powertrain of an EV equipped with a
dual planetary transmission is illustrated in Figure 1. For this system,
the discrete state set Q = {1,2,3,4,5,6} where the name of modes
are denoted by i instead of qi to avoid ambiguity when referring to
qi as the value of the discrete mode in the time interval [ti, ti+1).
The discrete states 1,2,5,6 correspond to fixed gear ratios while
3,4 represent the system dynamics in transition between gears. The
modes 1,3,5 correspond to the operation of the electric motor in
low speeds where the motor torque is limited by a maximum torque
constraint and the modes 2,4,6 correspond to the operation of the
electric motor in high speeds where the motor torque is limited by a
maximum power constraint.

During the transition between the gears, the powertrain possesses
one more degree of freedom than fixed gear ratio modes, and hence
the simplest hybrid state space (with the car velocity as its state
in fixed gear modes and with two independent angular velocities
as the state in the transition modes) gives the hybrid state space
H =

{
(1,R), (2,R), (3,R2), (4,R2), (5,R), (6,R)

}
.

The discrete input set Σ = {σ+, σ−, σP , σT } where σ+ leads
the system towards a higher speed gear, σ− directs it towars a lower
speed gear, σP enforces the maximum power constrained operation
and σT enforces the maximum torque constrained operation.

In the discrete states corresponding to fixed gear ratios, the
normalized motor torque is the only input and hence, U1 = U2 =
U5 = U6 = [−1, 1] ⊂ R, where negative values correspond to
the regeneration mode of the electric motor. In the discrete states
corresponding to transition phases, the normalized forces of the two
brakes operating the transmission are inputs, in addition to the motor
torque and hence, U3 = U4 = [−1, 1]× [0, 1]× [0, 1] ⊂ R3 where,
obviously, the last two components of the input corresponding to the
brake forces do not change signs.

The discrete state transition map Γ and the finite automaton A
are illustrated in Figure 1. As can be observed in this figure, Γ can
only make a discrete state transition in a hybrid state (q, x) if the
automaton A can make the corresponding transition in q.

The elements in the set of vector fields F are given as

f1 (x, u) = −A1x
2 +B1u− C1x−D1 , (37)

f2 (x, u) = −A1x
2 +B1

u

x
− C1x−D1 , (38)

f
(1)
3 (x, u) = −Assx(1) +Asrx

(2) −Asa
(
x(1) +R2x

(2)
)2

+Bsmtu
(1) +Bsstu

(2) −Bsrtu(3) −Dsl ,

f
(2)
3 (x, u) = Arsx

(1) −Arrx(2) −Ara
(
x(1) +R2x

(2)
)2

+Brmtu
(1) −Brstu(2) −Brrtu(3) −Drl , (39)

f
(1)
4 (x, u) = −Assx(1) +Asrx

(2) −Asa
(
x(1) +R2x

(2)
)2

+Bsm
u(1)

x(1) +R1x(2)
+Bssu

(2) −Bsru(3) −Dsl ,

f
(2)
4 (x, u) = Arsx

(1) −Arrx(2) −Ara
(
x(1) +R2x

(2)
)2

+Brm
u(1)

x(1) +R1x(2)
−Brsu(2) +Brru

(3) −Drl , (40)

f5 (x, u) = −A2x
2 +B2u− C2x−D2 , (41)

f6 (x, u) = −A2x
2 +B2

u

x
− C2x−D2 , (42)

where the coefficients A•, B•, C•, D• and R• in the above equations
and r• and k• in the following equations are model parameters whose
numerical values can be found in [17].

The set of jump transition maps Ξ is identified by

ξ12 = ξ21 = idR : x→ x , (43)

ξ13 = ξ24 : x→
[
r1x
0

]
, (44)

ξ31 = ξ42 :

[
x(1)

x(2)

]
→ x(1)

r1
, (45)

ξ34 = ξ43 = idR2 :

[
x(1)

x(2)

]
→

[
x(1)

x(2)

]
, (46)

ξ35 = ξ46 :

[
x(1)

x(2)

]
→ r2x

(2) , (47)

ξ53 = ξ64 : x→
[

0
x
r2

]
, (48)

ξ56 = ξ65 = idR : x→ x , (49)

While initiations of gear changing can be made freely (and
therefore switchings to 3,4 are controlled), the transitions back
to a fixed gear mode require the full stop for one of the degrees
of freedom. Moreover, switchings between torque-constrained and
power-constrained modes occur whenever the motor speed reaches a
certain value. The set of switching manifoldsM for the autonomous
switchings are given by

m12 = m21 ≡
{
x ∈ R : x− k1 = 0

}
∪
{
x ∈ R : x+ k1 = 0

}
,

(50)

m31 = m42 ≡
{
x ∈ R2 :

[
0 1

]
x = 0

}
, (51)

m34 = m43 ≡
{
x ∈ R2 :

[
1 R1

]
x− k2 = 0

}
∪
{
x ∈ R2 :

[
1 R1

]
x+ k2 = 0

}
, (52)

m35 = m46 ≡
{
x ∈ R2 :

[
1 0

]
x = 0

}
, (53)

m56 = m65 ≡
{
x ∈ R : x− k3 = 0

}
∪
{
x ∈ R : x+ k3 = 0

}
,

(54)

B. Association of Costs
Depending on the goal, one can associate numerous optimal control

problems for the powertrain. For time optimal tasks, the running costs
shall be taken to be lq (x, u) = 1 for all q ∈ Q ≡ {1,2,3,4,5,6},
so that once integrated, their sum gives the total spent time (see
[17], [18] for examples of this class). For the minimization of energy
consumption, the running costs shall be taken to be the power
consumption rates that are determined from the motor efficiency
map (see [17] for the derivation and more discussion). The resulting
expressions for lq’s are presented below.

l1 (x, u) = a1u
2 + b1xu+ c1u+ d1x , (55)

l2 (x, u) = a1
u2

x2
+ b1u+ c1

u

x
+ d1x , (56)

l3 (x, u) = atr
(
u(1))2 + btru

(1)(x(1) +R1x
(2))

+ ctru
(1) + dtr

(
x(1) +R1x

(2)) , (57)

l4 (x, u) = atr

(
u(1))2(

x(1) +R1x(2)
)2 + btru

(1)

+ ctr
u(1)

x(1) +R1x(2)
+ dtr

(
x(1) +R1x

(2)) , (58)

l5 (x, u) = a2u
2 + b2u+ c2x+ d2x , (59)

l6 (x, u) = a2
u2

x2
+ b2u+ c2

u

x
+ d2x . (60)
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For time optimal goals, one can associate (potentially state-
dependent) switching costs by considering unaccounted delays in
switching. For energy optimal goals, switching costs represent the
energy consumption of the mechanism performing the engagement
and release of the lock holding the stationary parts fixed. While the
HMP framework permits a wide range of nonlinear costs that depend
on the rotational speed of transmission elements (gears), we consider
a quadratic model fit, i.e.

c13(x) = c24(x) = c53(x) = c64(x) = η0 + η1x+ η2x
2, (61)

c31(x) = c42(x) = η′0 + η′1x
(1) + η′2(x(1))2, (62)

c35(x) = c46(x) = η′′0 + η′′1x
(2) + η′′2 (x(2))2, (63)

Notice that the switching cost in (62) contains only the first
component of the state x(1) because the second component x(2)

corresponds to the speed of the common ring gear in the transmission
vanishes as it needs to come to a full stop for the switching to occur.
Similarly, (63) contains only the second component of the state x(2)

because the common sun gear needs to come to a full stop at these
switching instances. For the numerical simulations in this section, we
assume a quadratic representation for the terminal cost

g
(
x
(
tf
))

= α0 + α1x
(
tf
)

+ α2x
(
tf
)2
, (64)

while any nonlinear representation satisfying A3 is also permitted.

C. The HMP Formulation
We consider the energy consumption minimization for acceleration

in the first gear from the stationary state, i.e. h0 ≡ (q, x) (t0) =
(1, 0) for a period of 2 seconds, i.e. [t0, tf ] = [0, 2]. We would like.
to perform a gear change to the second gear ratio, that corresponds to
6 since we know the vehicle’s speed exceeds 12 m/s = 43.2km/h
that results in the operation of the electric motor in the power
constrained region. Based upon the Hybrid Automata in Figure 1,
potential sequences of length L = 4 for the discrete state are 1356,
1246, 1346. Thus, the HMP needs to be solved three times (one
for each sequence) in order to determine the global optimal sequence
together with the associated inputs. It turns out that (see [17]) that
1246 is the optimal sequence and hence, we present the analysis
only for this sequence, while the results for other sequences follow
the same derivation.

1) Formation of the Hamiltonians: The family of system Hamil-
tonians are formed as

H1 (x, λ, u) = λ
(
−A1x

2 +B1u− C1x−D1

)
+ a1u

2 + b1xu+ c1u+ d1x , (65)

H2 (x, λ, u) = λ
(
−A1x

2 +B1
u

x
− C1x−D1

)
+ a1

u2

x2
+ b1u+ c1

u

x
+ d1x , (66)

H4 (x, λ, u) =

(
−Assx(1) +Asrx

(2) −Asa
(
x(1) +R2x

(2))2
+Bsm

u(1)

x(1) +R1x(2)
+Bssu

(2) −Bsru(3) −Dsl
)
λ(1)

+

(
Arsx

(1) −Arrx(2) −Ara
(
x(1) +R2x

(2)
)2

+Brm
u(1)

x(1) +R1x(2)
−Brsu(2) +Brru

(3) −Drl
)
λ(2)

+ atr

(
u(1)

)2

(
x(1) +R1x(2)

)2 + btru
(1) + ctr

u(1)

x(1) +R1x(2)

+ dtr
(
x(1) +R1x

(2)
)
, (67)

H6 (x, λ, u) = λ
(
−A2x

2 +B2
u

x
− C2x−D2

)
+ a2

u2

x2
+ b2u+ c2

u

x
+ d2x . (68)

2) Hamiltonian Minimization:: The Hamiltonian minimization
condition (11) for the Hamiltonians (65)–(68) determines the optimal
inputs as

u1 (t) = sat
[−1,1]

(
−
(
b1x (t) + c1 +B1λ (t)

)
2a1

)
, (69)

u2 (t) = sat
[−1,1]

(
−x (t)

(
b1x (t) + c1 +B1λ (t)

)
2a1

)
, (70)

u
(1)
4 (t) = sat

[−1,1]

(
−XM (t)

[
btrXM (t)+ctr+Bsmλ

(1)
(t)

+Brmλ
(2)
(t)

]
2atr

)
,

u
(2)
4 (t) =

{
−1 if Bssλ

(1) (t)−Brsλ(2) (t) ≥ 0

0 if Bssλ
(1) (t)−Brsλ(2) (t) < 0

,

u
(3)
4 (t) =

{
−1 if Brrλ

(2) (t)−Bsrλ(1) (t) ≥ 0

0 if Brrλ
(2) (t)−Bsrλ(1) (t) < 0

,

(71)

u6 (t) = sat
[−1,1]

(
−x (t)

(
b2x (t) + c2 +B2λ (t)

)
2a2

)
, (72)

where x (t) ≡ xoqi (t) and XM (t) :=
(
x

(1)
(t)

+R1x
(2)
(t)

)
are employed

to shorten the notation.
3) Adjoint Dynamics: The dynamics of the (backward) adjoint

processes are derived from (13) as

λ̇1 = −b1uo1 (t)− d1 + λ1 (t) (2A1x1 (t) + C1) (73)

λ̇2 =
2a1 (uo2 (t))2

(x2 (t))3
+
c1u

o
2 (t)

(x2 (t))2
− d1

+ λ2 (t)

(
2A1x2 (t) +B1

uo2 (t)

(x2 (t))2
+ C1

)
(74)

λ̇
(1)
4 =

2atr
(
u
o(1)
4 (t)

)2

(
x(1) +R1x(2)

)3 +
ctru

o(1)
4 (t)(

x(1) +R1x(2)
)2 − dtr

+λ
(1)
4

(
Ass + 2Asa

(
x(1) +R2x

(2))+
Bsmu

o(1)
4(

x(1) +R1x(2)
)2
)

+λ
(2)
4

(
−Ars + 2Ara

(
x(1) +R2x

(2))+
Brmu

o(1)
4(

x(1) +R1x(2)
)2
)

(75)

λ̇
(2)
4 =

2R1atr
(
u
o(1)
4 (t)

)2

(
x(1) +R1x(2)

)3 +
R1ctru

o(1)
4 (t)(

x(1) +R1x(2)
)2 −R1dtr


+λ

(1)
4

(
−Asr + 2R2Asa

(
x(1)+R2x

(2))+
R1Bsmu

o(1)
4(

x(1) +R1x(2)
)2
)

+λ
(2)
4

(
Arr + 2R2Ara

(
x(1) +R2x

(2))+
R1Brmu

o(1)
4(

x(1) +R1x(2)
)2
)

(76)

λ̇6 =
2a2 (uo6 (t))2

(x6 (t))3
+
c2u

o
6 (t)

(x6 (t))2
− d2

+ λ6 (t)

(
2A2x6 (t) +B2

uo6 (t)

(x6 (t))2
+ C2

)
(77)
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4) Adjoint Boundary Conditions: The terminal and boundary
conditions for the adjoint process from (16) and (17) are

λ1 (ts1) = λ2 (ts1+) + p1 . (78)

λ2 (ts2) =
[
r1 0

] [ λ
(1)
4 (ts2+)

λ
(2)
4 (ts2+)

]
+ η1 + 2η2x (ts2−)

= r1λ
(1)
4 (ts2+) + η1 + 2η2x (ts2−) , (79)

λ4 (ts3) =

[
0
r2

]
λ6

(
t+s3

)
+ p3

[
1
0

]
+

[
0

η′′1 + 2η′′2x
(
t−s3
) ]

=

[
p3

r2λ6 (ts3+) + η′′1 + 2η′′2x (ts3−)

]
, (80)

λ6
(
tf
)

= α1 + 2α2x
(
tf
)
, (81)

5) State Process: The optimal state process is obtained by the
substitution of the optimal inputs (69) to (72) into the vector fields
(37), (38), (40) and (42). The resulting set of differential equations,
that are coupled to the adjoint dynamics (73) to (77) due to the
presence of λ in the inputs (69) to (72), i.e.

ẋq =
∂Hq
∂λq

≡ fq
(
xq(t), u

o
q(xq(t), λq(t))

)
, q = 1,2,4,6

(82)
and are subject to the initial and boundary conditions:

x1 (t0) = 0 , (83)

x2 (ts1) = x1 (ts1−) , (84)

x4 (ts2) ≡

[
x

(1)
4 (ts2)

x
(2)
4 (ts2)

]
=

[
r1x2 (ts2−)

0

]
, (85)

x6 (ts3) = r2 x
(2)
4 (ts3−) , (86)

Moreover, the switching manifold condition must be satisfied at
the autonomous switching instances ts1 , ts3 , i.e.

x1 (ts1−) = k1 , (87)

x
(1)
4 (ts3−) = 0 . (88)

6) Hamiltonian Boundary Conditions: The Hamiltonian bound-
ary conditions (18) at the optimal switching instances ts1 , ts2 , ts3
turn into continuity conditions

Hq
(
xq, λq, u

o
q (xq, λq)

)
= Hq′

(
xq′ , λq′ , u

o
q′
(
xq′ , λq′

))
,

(q, q′)ts1= (1,2), (q, q′)ts2= (2,4), (q, q′)ts3= (4,6). (89)

A detailed representation of these conditions can be found in [17].
7) Numerical Results: For the 10 (scalar) ordinary differential

equations (82), (77)–(73), the 3 a priori unknown switching instances
ts1 , ts2 , ts3 and the 2 unknown auxiliary parameters p1, p3 there
are 15 equations provided by (83)–(86), (81)–(78), (89) in the form
of initial, boundary and terminal conditions. It is not difficult to
show that for the parameter values in [15]–[17], [43], the necessary
optimality conditions of the HMP in the form of the above set of
multiple-point boundary value differential equations uniquely identify
optimal inputs and the corresponding optimal trajectories. The results
are illustrated in Figure 3 (a). In order to illustrate the satisfaction of
the adjoint boundary conditions (80) and (79), the components λ(1)

and λ(2) of the adjoint process in t ∈ [ts2 , ts3 ] are multiplied by r1
and 1

r2
respectively, and are in-zoomed in Figure 3 (b). Interested

readers are referred to [17] for more details on derivations and
discussions on the results.
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(a) The evolution of the (optimal) state x, adjoint process λ, optimal input
u and the Hamiltonian H over time. Due to the relatively large values of
the state x4 = (x

(1)
4 , x

(2)
4 )T, the scaled values 1

r1
x
(1)
4 and r2x

(2)
4 with

r1 = 200 and r2 = 0.02 are displayed for better illustration.
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(b) Satisfaction of adjoint boundary conditions (80) and (79) which are
accompanied by dimension-changes. For better illustration of the equalities,
state invariant switching costs c24 = c46 = η0 are considered and instead
of the adjoint components λ4 = (λ

(1)
4 , λ

(2)
4 )T, the scaled values r1λ

(1)
4 and

1
r2
λ
(2)
4 are displayed.

Fig. 3: HMP-based solution of the minimum energy acceleration
problem for an electric vehicle with a dual planetary transmission.
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