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Transmission is one of the crucial elements of amotor vehicle's driveline that affects efficiency and
dynamic performance of the vehicle. This paper studies the dynamical modeling, controller de-
sign, and experimental validation of a two-speed transmission for electric vehicles which has a
specification of seamless gear shifting. The transmission incorporates a two-stage planetary gear
set with common sun and common ring gears and two braking mechanisms to control the flow
of power. The dynamical modeling of the driveline of an electric vehicle equipped with such a
transmission is derived by exploiting the torque balance and virtual work principle. Thereafter,
the PontryaginMinimumPrinciple is applied to design an optimal shifting controller. This control-
ler keeps the output speed and the output torque of the driveline constant during the gear shifting
operation while minimizing the shifting time and the dissipation of energy caused by the internal
brakes. Since the optimal control law provided by the Minimum Principle is open loop, a
backstepping controller is designed to provide a stabilizing feedback law based on the optimal
control inputs. Simulation and experimental results demonstrate the ability of the proposed trans-
mission to exhibit smooth shifting without excessive oscillations in the output speed and torque.

© 2015 Elsevier Ltd. All rights reserved.
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1. Introduction

Increasing fuel cost and environmental concerns have pushed the automotive industry to gradually replace internal combustion
engine (ICE) vehicles with hybrid electric (HEV) and fully electric vehicles (EV). However, the energy density of electric batteries is
much less than that of fossil fuels. Thus, by changing the source of power from internal combustion engine to electric motor, it is re-
quired to minimize the losses in the driveline in order to maximize the range of EVs. Pure electric vehicles in the market are mostly
equipped with single ratio transmission with a trade-off between efficiency and dynamic performance, such as maximum speed, ac-
celeration, and gradability [1]. Research indicates that usingmulti-speed transmission for EVs can reduce the size of the electricmotor
and provide an appropriate balance between the efficiency and the dynamic performance [1–5]. Currently usedmulti-speed transmis-
sions for EVs such as Automated Manual Transmission (AMT), Automatic Transmission (AT), Dual Clutch Transmission (DCT), and
Continuously Variable Transmission (CVT)were initially designed for ICE vehicles [6]. Since ICEs cannot operate below certain speeds
and their speed control during gear changes is not an easy task, the presence of clutches or torque convertors is inevitable for start-
ups, idle running and gear changing. This, however, is not the case for EVs as electric motors are speed controllable in a wide range
of operating speeds. This difference provides an opportunity for designing novel transmissions for EVs [4,5].
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AMT is of great interest because of its lower weight and higher efficiency in comparisonwith other types of transmissions such as
AT, CVT and DCT [7–9]. However, the torque interruption during gear changing operation, which comes from the disengagement and
re-engagement of the transmission to the electric motor or engine, reduces passenger comfort and lifetime of the synchronizers. Gear
shifting and drivability improvement of a clutchless AMT for EVs are addressed in [10] via a sliding mode controller that reduces the
gap of torque interruption (shifting time). The same problem is tackled in [11] by using a combination of state-feedback andH∞ robust
controllers to provide an optimal speed synchronization. A comparison between a fixed-ratio transmission and a novel two-speed
I-AMT (Inverse Automated Manual Transmission) with rear mounted dry clutches is made in [3] and dynamic programming is
used to design the optimal gear ratios for the first and second gears in order to minimize the energy consumption for urban and sub-
urban drive cycles. It is indicated that efficiency and dynamic performance of a two-speed AMT transmissionwith optimal gear ratios
are much better than those of a single speed transmission.

In contrast to AMT, DCT has the special feature of eliminating the output torque interruption during gear shifts, but they have lower ef-
ficiency andhigherweight [12–14]. A two-speedDCT transmission for electric vehicles is studied in [15] and an open-loop shifting controller
is presented. The results demonstrate that the vibration of the output torque is not considerable and the torque hole is almost eliminated.

Continuously variable transmissions (CVTs) provide continuous change of the gear ratio. The principle used by CVT transmission is
to keep the source of power (electricmotor or engine) in themost efficient pointwhile changing the gear ratio in order to get different
combinations of the torque and speed. However, since the set of efficient operating points for electricmotors is rich enoughmultiplic-
ity of gear ratios or a continuously variable transmission are not necessary for EVs [16–19].

Similar to DCTs, planetary-gear-based ATs have the ability to eliminate the output torque interruption during the gear shift oper-
ation. However, due to the existence of torque convertors and hydraulic systems in ATs, they generally have lower efficiency in com-
parison with other types of transmissions and they are not of great interest for EVs. Although the presence of torque convertor
provides passenger comfort and increases drivability, the output power of the transmission can be decreased due to internal slippage
inside the torque convertor when it is not completely locked-up [6,20–23].

This paper proposes a compact two-speed clutchless seamless transmission in order to meet a desirable efficiency, performance,
and drivability for EVs. This transmission is comprised of a dual-stage planetary gear set with common ring and common sun gears.
The ratio of the pitch diameter of the ring gear to the sun gear in the input and output sides are different in order to provide two dif-
ferent gear ratios. A special feature of planetary gear trains is the possession of high power density due to the torque distribution over
several gears which provides a compact design [6]. Two friction brakes are considered to direct the flow of power during gearshift
through the control of the speed of the sun and the ring gears such that a fast and smooth gear change is achieved. The proposed
design is such that the transmission is perpetually connected to the electric motor and final drive and there is no clutch or torque
converter to disconnect this mechanical coupling.

The gear shift control through torque and inertia phases is the conventional control strategy employed for ATs and DCTs [24]. The
control of the proposed transmission through these phases is studied in [4]. Because of the perpetual connectedness of the power
transmission paths in this transmission, torques and speeds are always dependent on each other through the transmitted power.
Hence, the control strategy can be further improved such that the control strategy would not be required to be distinctly separated
into the torque and inertia phases. This forms the basis for the controller design in this paper.

Fig. 1 shows the schematic view of the driveline of an electric vehicle equippedwith the proposed two-speed transmission. As can
be seen in Fig. 1, the input of the transmission is the carrier of the first stage of the two-stage planetary gear set, which is attached to an
electricmotor. The output of themechanism is the carrier of the second stagewhich is connected via thefinal drive to thewheels. Two
different gear ratios can be obtained by braking the sun or the ring gears. As explained in more detail in Section 4 the control of the
brakes can be made in such a way that the gear shifting would be seamless and without any torque interruption. Fig. 2 shows a 3D
exploded view diagram of the proposed transmission. Here, for brevity, the terms sun, ring and planets are used instead of sun
gear, ring gear and planet gears, respectively.
Fig. 1. The driveline of an EV equipped with the proposed two-speed transmission.



Fig. 2. 3D exploded view diagram: a) input carrier, b) first stage planetary gear set, c) common ring gear, d) second stage planetary gear set, e) band brake, f) common
shaft for sun gears, g) output carrier, h) outer hub for the sun brake, i) friction plates and j) inner hub for the sun brake.
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The kinematic analysis of the two-stage planetary gear set is studied in Section 2. In this section, the achievable gear ratios of the
transmission are presented as a function of the ratios of the first and second planetary gear sets. In Section 3, a dynamical model of the
driveline of an electric vehicle equippedwith such a transmission is developed for subsequent use in the controller design in Section 4.
In this section, optimal control problems are formulated and the Pontryagin Minimum Principle (PMP) is employed to design the op-
timal control for minimizing the shifting time and the energy dissipation caused by the internal brakes during the gear change while
keeping the output torque and the output speed of the driveline constant. Based on the results of the optimal controller, the
backstepping method is applied to design a closed-loop asymptotically stable controller which copes with the actuator limitations.
Simulation and experimental results are provided in Section 5 to validate the performance of the controller and the seamless behavior
of the proposed transmission.

2. Kinematic analysis and gear ratios

2.1. Kinematic equations

In this section, the kinematic equations of the dual-stage planetary gear set and the achievable gear ratios are studied in order to be
utilized in the dynamical modeling of the proposed transmission. The kinematic relations between the components of a single stage
planetary gear set, such as Carrier (C), Sun (S), Planets (P), and Ring (R) are [25]:
rRωR ¼ rPωP þ rCωC ; rR ¼ rP þ rC ð1Þ
rCωC ¼ rPωP þ rSωS; rC ¼ rP þ rS ð2Þ
where rS, rP, and rR are the pitch radii of the sun, planet, and ring, respectively. The parameter rC is the radius of the circle onwhich the
planets are mounted. The variables ωS, ωP, ωR, and ωC are the angular velocities of the sun, planets, ring, and carrier, respectively. By
eliminating ωP and rP from Eqs. (1) and (2), the kinematic relation between the ring, the sun, and the carrier is as follows:
rR þ rSð ÞωC ¼ rSωS þ rRωR ð3Þ
For simplification of the formulation, the ratio of the pitch radius of the ring (rR) to the sun (rS) for thefirst and the second stages of
the planetary gear sets are defined as:
R1 :¼ rR
rS

� �
1st stage

;R2 :¼ rR
rS

� �
2nd stage

: ð4Þ
It is obvious that R1 and R2 are greater than 1 since the pitch radius of the ring is always greater than the sun's.
During the gear changing process, the transmission has two degrees of freedom, hence it is required to select two generalized co-

ordinates to derive the equations ofmotion. In this paper, the generalized coordinates are chosen to be q=[θS θR]T, where θS and θR are
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the angular displacements of the sun and the ring, respectively and accordingly, all the angular velocities are expressed as functions of
ωS andωR. From Eqs. (1)–(4) the angular velocities of the input carrier (ωC,in), the output carrier (ωC,out), the input planets (ωP,in), and
the output planets (ωP,out) can be expressed as angular velocities of the sun (ωS) and the ring (ωR) as follows:
ωC;in ¼ R1ωR þωS

R1 þ 1ð Þ ; ωC;out ¼
R2ωR þωS

R2 þ 1ð Þ
ωP;in ¼ R1ωR−ωS

R1−1ð Þ ; ωP;out ¼
R2ωR−ωS

R2−1ð Þ

8>><
>>: : ð5Þ
2.2. Gear ratios

According to equation set (5), the gear ratio of the transmission (the ratio of the input speed to the output speed) can be expressed
as follows:
ωC;in

ωC;out
¼ R2 þ 1ð Þ ωS þ R1ωRð Þ

R1 þ 1ð Þ ωS þ R2ωRð Þ : ð6Þ
According to Eq. (6), three different gear ratios are achievable:

1 If the ring is completely grounded (ωR = 0):
ωC;in

ωC;out
¼ R2 þ 1ð Þ

R1 þ 1ð Þ ¼ GR1: ð7Þ
2 If the sun is completely grounded ωS = 0:
ωC;in

ωC;out
¼ R2 þ 1ð ÞR1

R1 þ 1ð ÞR2
¼ GR2: ð8Þ
3 If neither the sun nor the ring is grounded (ωR ≠ 0 and ωS ≠ 0):
ωC;in

ωC;out
¼ R2 þ 1ð Þ ωS þ R1ωRð Þ

R1 þ 1ð Þ ωS þ R2ωRð Þ ¼ GRT : ð9Þ
Here,GR1 andGR2 are considered as thefirst and the second gear ratioswhereGRT is the transient gear ratio from thefirst gear ratio
to the second one during the gear shifting process. Although the gear ratios are dependent, it is possible to solve Eqs. (7) and (8) for R1
and R2 in order to get the desired GR1 and GR2. Fig. 3 shows the achievable GR1 and GR2 by varying R1 and R2 from 1 to 10, and the
selected gear ratios in this paper.

The effect of gear ratio selection on the efficiency and dynamic performance is studied in [1] where genetic algorithms are used in
order to determine the optimal range of gear ratios for a pure electric vehiclewith a 75 kWpermanentmagnet ACmotor and equipped
with a two-speed transmission. The results show that the dynamic performance is highly dependent on the gear ratio selectionwhile
Fig. 3. Achievable GR1 and GR2 by varying R1 and R2.
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efficiency is not considerably affected by the transmission gear ratios. The possibility of improving the dynamic performance of EVs is
an advantage of multi-speed transmissions compared to single speed ones [26].

As it can be observed in Fig. 3, except for the line R1 = R2, one of the gear ratios expressed in Eqs. (7) and (8) is always overdrive
and the other one is underdrive.

In this paper R1 = 2 and R2 = 4 are selected to provide GR1 = 1.667 and GR2 = 0.833 to be used in both simulation and experi-
mental analyses. These gear ratios aremultiplied by the final drive ratio ifd to give the overall gear ratios of the driveline in the vehicle.
Hence, the desired overall gear ratios can be obtained by appropriate selection of R1, R2, and ifd.

For instance,with the selection R1=2, R2=4, and ifd=5 the resulting overall gear ratios areGR1= 8.333 andGR2= 4.167which
lie within the optimal ranges for the two-speed electric vehicle reported in [1].

3. Dynamical modeling of the driveline

As it can be seen in Fig. 1, the driveline is comprised of an electric motor, a flexible input shaft, the two-speed seamless transmis-
sion, a flexible output shaft, a final drive, and wheels. In this section, the dynamic model of the driveline is presented in order to be
employed for the controller design purposes.

3.1. Electric motor and flexible input shaft

The electric motor is the only source of power in this driveline. The dynamics of the motor can be expressed by using the torque
balance equation as follows:
ω
�

M ¼ TM−Td

JM
ð10Þ
where JM and TM are the inertia and the electromagnetic torque of the motor, respectively. Here, Td is the drive torque which can be
considered as the load on the motor and can be calculated as follows:
Td ¼ Kd θM−θC;in
� �

þ Bd ωM−ωC;in

� �
ð11Þ
where Kd and Bd are the equivalent torsional stiffness and damping constants of theflexible input shaft and θM and θC,in are the angular
displacements of the motor and the input carrier. By differentiating Eq. (11) with respect to time and assuming the damping term to
be negligible [27], the torque rate of the drive torque can be considered as follows:
T
�

d ≈ Kd ωM−ωC;in

� �
: ð12Þ
3.2. Two-speed seamless transmission

By considering the generalized coordinates to be q = [θS θR]T, where θS and θR are the angular displacements of the sun and the
ring gears, and by neglecting the stiffness of the gears, the principle of virtual work can be applied to derive the dynamic equation
of the two-speed transmission. The principle of virtual work states that for a system with m number of generalized coordinates qk,
k ∈ {1, …, m} [28]:
Xm
k¼1

Qappl;nc
k −

d
dt

∂L
∂q

�

k

 !
þ ∂L
∂qk

" #
δqk ¼ 0 ð13Þ
where L = T − V is the Lagrangian, T and V are the total kinetic and potential energy of the system. Qk
appl,nc and δqk are the non-

conservative applied torques and virtual displacements, respectively.
By considering the center of mass of the system as the reference point for the gravitational energy and by considering all the me-

chanical parts inside the transmission to be rigid, the total potential energy of the system remains constant (V=0). The kinetic energy
of the system consists of the kinetic energy of the input and output carriers, the ring, the sun, the four input and four output planets as
follows:
T ¼ 1
2
IC;inω

2
C;in þ

1
2
IC;outω

2
C;out þ

1
2
IRω

2
R þ 4

1
2
IP;inω

2
P;in þ

1
2
mP;inr

2
C;inω

2
C;in

� �
þ 1
2
ISω

2
S þ 4

1
2
IP;outω

2
P;out þ

1
2
mP;outr

2
C;outω

2
C;out

� �
:

ð14Þ
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In Eq. (14), IC,in, IC,out, IS, IR, IP,in, and IP,out are the moment of inertia of the input carrier, output carrier, sun, ring, input planets, and
output planets, respectively; mP,in and mP,out are the mass of the input and output planets. In terms of the generalized coordinates
introduced earlier, the kinetic energy is written as:
T ¼ 1
2

IC;in þ 4mP;inr
2
C;in

� � ω2
S þ R2

1ω
2
R þ 2R1ωRωS

R1 þ 1ð Þ2
 !

þ1
2

IC;out þ 4mP;outr
2
C;out

� � ω2
S þ R2

2ω
2
R þ 2R2ωRωS

R2 þ 1ð Þ2
 !

þ4
1
2
IP;in

ω2
S þ R2

1ω
2
R−2R1ωRωS

R2−1ð Þ2
 !

þ 1
2
ISω

2
S

(

þ4
1
2
IP;out

ω2
S þ R2

2ω
2
R−2R2ωRωS

R2−1ð Þ2
 !(

þ 1
2
IRω

2
R:

ð15Þ
By using the principle of virtual work in Eq. (13), the equations of motion for the two generalized coordinates q= [θS θR]T can be
written as follows:
ω
�

S ¼
1
a

TBSτ−TBRλ−ωSCSτ þωRCRλþ cTd−dTo þ TS f τ−TRfλ
� �

ω
�

R ¼ 1
a
ðTBRγ−TBSλþωSCSλ−ωRCRγ þ eTd− f To þ TR fγ−TS fλ

8><
>: ð16Þ
inwhich the coefficients are listed in Table 1. In Eq. (16), CS, CR, TSf, and TRf are the coefficients of the viscous and Coulomb friction of the
transmission measured from experimental tests and To is the output torque of the transmission.

It should be noted that TBS and TBR are the braking torques of the sun and ring gears.
In the transmission system proposed in this paper, the brake of the sun is designed to be of the multi-plate brake type. Thus, the

relation between the normal applied force on the plates and the resulting torque is [29]:
TBS ¼ −μPNBS n
2
3

� �
R3
o−R3

i

R2
o−R2

i

 !
sign ωSð Þ; NBS ≥ 0 ð17Þ
where μP is the coefficient of friction between the plates, NBS is the applied normal brake force to the plates and n is the number of the
friction surfaces. The inner and outer radii of the multi-plate brake are denoted by Ri and Ro, respectively. The brake of the ring is de-
signed to be of band brake type, resulting in the relation between the applied normal force at the end of the band and the resulting
torque in the form of [29]:
TBR ¼ −NBRRD eμDθD−1
� �

;ωR ≥ 0; NBR ≥ 0

TBR ¼ NBRRD 1−e−μDθD
� �

;ωR b 0; NBR ≥ 0

8<
: ð18Þ
where NBR is the force applied at the end of the band, RD is the radius of the drum brake, μD is the coefficient of friction between band
and drum and θD is the angle of wrap.

For the band brake, the positive direction of rotation is considered as the energizing mode of the band brake.
In order to avoid the undesirable drag torque in both brakes, particularly in themulti-plate brake, they are designed to be of the dry

type [30–32].
Fig. 4 shows how engaging and disengaging the brakes of sun (TBS) and ring (TBR) change the path of power transmission and con-

sequently the gear ratio.
Table 1
The coefficient of the dynamical modeling of the two-speed transmission.

α ¼ ðIC;inþ4mP;in r2C;inÞ
ðR1þ1Þ2

ψ ¼ 4IP;out
ðR2−1Þ2

β ¼ ðIC;outþ4mP;out r2C;out Þ
ðR2þ1Þ2

a = (γτ − λ2)

γ = [IS + α + β + ϕ + ψ] c ¼ τ−R1λ
R1þ1

τ = [IR + (α + ϕ)R12 + (β + ψ)R22] d ¼ τ−R2λ
R2þ1

λ = [(α − ϕ)R1 + (β − ψ)R2] e ¼ γR1−λ
R1þ1

ϕ ¼ 4IP;in
ðR1−1Þ2 f ¼ γR2−λ

R2þ1



Fig. 4. Power transmission path.
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3.3. Vehicle dynamics and flexible output shaft

By using lumped mass method [27] and the torque balance equation, the dynamics of the vehicle can be expressed as
follows:
ω
�

w ¼ Toi f d−Tv

Jv
ð19Þ
where Jv is the inertia of the vehicle and wheels, ifd is the final drive ratio and Tv is the resisting torque on the vehicle that can be
calculated from the following relation [33,34]:
Tv ¼ Rw
1
2
ρv2xCdAf þmvg sin θroadð Þ þ Krmvg cos θroadð Þ

� �
: ð20Þ
In Eq. (20), Rw, θroad,Kr,mv, vx, ρ, Cd and Af indicatewheel radius, road angle, tire rolling resistance, vehiclemass, vehicle velocity, air
density, aerodynamic drag coefficient and vehicle frontal area. Slip of the tires are neglected so the geometric relation vx = Rwωw can
be considered between the angular velocity of thewheels and the speed of the vehicle for the straightmotion. Theoutput torque of the
transmission, denoted To, can be calculated from the following equation:
To ¼ Ko θC;out−i f dθw
� �

þ Bo ωC;out−i f dωw

� �
ð21Þ
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where K

o

and B

o

are the equivalent torsional stiffness and damping constants of the flexible output shaft and θ
C,out

and θ
w

are the an-
gular displacements of the output carrier and the wheels. By differentiating Eq. (21) with respect to time and assuming the damping
term to be negligible [27], the torque rate of the output torque of the transmission can be considered as follows:
T
�

o ≈ Ko ωC;out−i f dωw

� �
: ð22Þ
By collecting Eqs. (10), (12), (16), (19) and (22) together, the full state dynamics of the system are as follows:
ω
�

M ¼ −1
JM

Td þ
1
JM

TM

T
�

d ¼ KdωM−
Kd

R1 þ 1
ωS−

KdR1

R1 þ 1
ωR

ω
�

S ¼
−CSτ

a
ωS þ

CRλ
a

ωR þ
c
a
Td−

d
a
To

þ τ
a

TBS þ TS f

� �
−

λ
a

TBR þ TR f

� �

ω
�

R ¼ CSλ
a

ωS−
CRγ
a

ωR þ
e
a
Td−

f
a
To

−
λ
a

TBS þ TS f

� �
þ γ

a
TBR þ TR f

� �

T
�

o ¼ −i f dKoωw þ Ko

R2 þ 1
ωS þ

KoR2

R2 þ 1
ωR

ω
�

w ¼ −
1
Jv
Tv þ

i f d
Jv

To:

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

ð23Þ
4. Controller design

As explained earlier, the proposed transmission has the ability to change the gear while transmitting the power from themotor to
the wheels without any torque or speed interruption in the output. This goal, together with theminimization of the shifting time and
the energy dissipation caused by internal brakes of the transmission during gear changing is formulated in the optimal control frame-
work in Sections 4.1 and 4.2 which forms the basis for the general control strategy in Section 4.3.

4.1. Preliminaries for the optimal controller design

For simplicity of notation, the problem is formulated for the case when the resisting torque from the road (Tv) on the vehicle is
constant during the gear shifting and accordingly the output torque and output speed of the driveline are desired to remain constant
during the gear changing. These requirements are interpreted asω

�

w ¼ 0 and Ṫo = 0 and hence from Eqs. (5) and (23) these control
requirements are expressed as:
To ¼
1
i f d

Tv ð24Þ
and
ωC;out ¼ i f dωw: ð25Þ

The constant value for ωC,out in Eq. (25) necessarily requires that (see Eq. (5)):

ωR ¼ R2 þ 1
R2

� �
i f dωw−

1
R2

ωS ð26Þ
as well as:
ω
�

C;out ¼ 0⇒ω
�

R ¼ −1
R2

ω
�

S: ð27Þ
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The objective of the control is to go from an initial gear into a target gear (i.e., fromEqs. (7) to (8) through Eq. (9) and vice versa) by
means of engaging and releasing the brakes. For the statesωS and ωR in Eq. (23) the initial and terminal conditions can be expressed
as:
ωS
ωR

� �
¼ ωS @ GR1ð Þ

0

� �
⇌

upshift

downshift

ωS
ωR

� �
¼ 0

ωR @ GR2ð Þ

" #
: ð28Þ
From Eqs. (27) and (23) the following equation can be derived:
λR2−τð Þ CSωS−TBSð Þ− γR2−λð Þ CRωR−TBRð Þ þ cþ eR2ð ÞTd− λR2−τð ÞTS f þ γR2−λð ÞTR f− dþ f R2ð ÞTo ¼ 0: ð29Þ
Rearranging Eq. (29) gives:
Td ¼ 1
cþ eR2

λR2−τð ÞTBS þ λ−γR2ð ÞTBR þ τ−λR2ð ÞCSωSð þ γR2−λð ÞCRωR þ λR2−τð ÞTS f− γR2−λð ÞTRf þ dþ f R2ð ÞTo

�
: ð30Þ
The controllability of Eq. (23) implies that there exist a motor torque TM such that Eq. (30) is satisfied for all instants (see [5] and
also Section 4.3 of this paper and Eq. (83)). Thus, among the control inputs, themotor torque TM is reserved for satisfying Eq. (30), and
hence the number of independent control inputs is reduced to two, i.e., the brakes of the sun and ring TBS and TBR.

Substituting Td from Eq. (30) and ωR from Eq. (5) into the equation for ω
�

S in Eq. (23) results in:
ω
�

S ¼
1

a cþ eR2ð Þ ð− eτ þ cλð ÞCSR2 þ eλþ cγð ÞCR½ �ωS− de−cfð ÞR2To

þ 1þ R2ð Þ eλþ cγð ÞCRωC;out þ eτ þ cλð ÞR2TBS− eλþ cγð ÞR2TBR

þ eτ þ cλð ÞR2TS f− eλþ cγð ÞR2TRf Þ:

ð31Þ
For the ease of notation, the coefficients in Eq. (31) are denoted by
AS :¼
eτ þ cλð ÞCSR2 þ eλþ cγð ÞCR

a cþ eR2ð Þ
BS1 :¼ eτ þ cλð ÞR2

a cþ eR2ð Þ ; BS2 :¼ eλþ cγð ÞR2

a cþ eR2ð Þ
GS :¼

1
a cþ eR2ð Þ 1þ R2ð Þ eλþ cγð ÞCRωC;out

�
− de−cfð ÞR2To þ eτ þ cλð ÞR2TS f− eλþ cγð ÞR2TR f

�

8>>>>>>>>><
>>>>>>>>>:

:

Thus Eq. (31) is represented by
ω
�

S ¼ −ASωS þ BS1TBS−BS2TBR þ GS ð32Þ
with the initial and the terminal conditions from Eq. (28):
ωS t0ð Þ ¼ ωS @GR1ð Þ ; ωS t f
� �

¼ 0 ð33Þ
for the upshift and:
ωS t0ð Þ ¼ 0; ωS t f
� �

¼ ωS @GR2ð Þ ð34Þ
for the downshift processes. The times t0 and tf indicate the initial and terminal instances of the gear changing process.
It is assumed that during the gear changing process the ring and the sun are rotating in the positive directions and hence according

to Eq. (17) and (18) it can be concluded that:
− Tmax
BS

�� ��≤TBS≤0; − Tmax
BR

�� ��≤TBR ≤0 : ð35Þ
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4.2. Optimal control problem

The Pontryagin Minimum Principle states that for a system with the dynamics equation:
x
�
tð Þ ¼ f x tð Þ;u tð Þ; tð Þ ð36Þ
and the cost functional
J uð Þ ¼
Z t f

t0

l x tð Þ;u tð Þ; tð Þdt þ h x t f
� �

; t f
� �

; ð37Þ
there exists an adjoint process p⁎ for the optimal control input u⁎ and along the corresponding optimal trajectory x⁎, such that:
x
� � tð Þ ¼ ∂H

∂p
x� tð Þ;u� tð Þ;p� tð Þ; t	 


p
� � tð Þ ¼ −

∂H
∂x

x� tð Þ;u� tð Þ;p� tð Þ; t	 

H x� tð Þ;u� tð Þ;p� tð Þ; t	 


≤Hðx� tð Þ;u tð Þ;p� tð Þ; t


8>>>><
>>>>:

ð38Þ
for all admissible u(t), where the Hamiltonian H is defined by:
H x tð Þ;u tð Þ;p tð Þ; tð Þ≜l x tð Þ;u tð Þ; tð Þ þ pT tð Þ f x tð Þ;u tð Þ; tð Þ; ð39Þ
and the terminal boundary condition
H x� t f
� �

;u� t f
� �

;p� t f
� �

; t f
� �

þ ∂h
∂t

x� t f
� �

; t f
� �� �

δt f þ
∂h
∂x

x� t f
� �

; t f
� �

−p� t f
� �� �T

δxf ¼ 0 ð40Þ
is satisfied [35].

4.2.1. The minimum shifting time problem
The cost functional for the minimum time control problem is [35]:
J uð Þ ¼
Z t f

t0

1dt; ð41Þ
with tf being the first time after t0 that the terminal condition in Eqs. (33) and (34) occurs. According to Eqs. (32) and (39), the
Hamiltonian is formed as:
H ωS; p; TBS; TBRð Þ ¼ 1þ p −ASωS þ BS1TBS−BS2TBR þ GSð Þ: ð42Þ
Based on the Pontryagin Minimum Principle, the dynamic of the adjoint process p⁎ is governed by the following equation:
p
� � ¼ −

∂H ωS; p
�
; TBS; TBRð Þ

∂ωS
¼ p�AS ð43Þ
and the Hamiltonian minimization condition results in:
H ω�
S;p

�
; T�

BS; T
�
BR

	 

≤ H ω�

S;p
�
; TBS; T

�
BR

	 
 ð44Þ
for all − |TBS
max| ≤ TBS ≤ 0, and
H ω�
S;p

�
; T�

BS; T
�
BR

	 

≤ H ω�

S;p
�
; T�

BS; TBR

	 
 ð45Þ
for all− |TBR
max| ≤ TBR ≤ 0. Since this is a fixed terminal value problem, from Eq. (40), the terminal value for the adjoint process is free

and
H ω�
S;p

�
; T�

BS; T
�
BR

	 
 ¼ 0 ð46Þ
at the final time tf. This also gives Eq. (46) for all t ∈ [t0 tf] (see e.g., [36]). Hence, according to Eq. (42):
p� −ASω
�
S þ BS1T

�
BS−BS2T

�
BR þ GS

	 
 ¼ −1 ð47Þ



Fig. 6. E
(F) sole
(J) inpu

Fig. 5. Driveline model in MATLAB/Simulink by utilizing SimDriveLine components.
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for all t ∈ [t0 tf]. Solving Eq. (43) results in
p� tð Þ ¼ p� t f
� �

eAs t f−tð Þ: ð48Þ
Since the angular velocity of the sun is decreasing in the upshift process (ω
�

S ≤0), Eq. (47) requires that p⁎(t0) N 0 and hencep⁎(t) N 0
for all t ∈ [t0,tf]. Thus the Hamiltonianminimization Eqs. (44) and (45) give TBS⁎=− |TBSmax| and TBR⁎=0, respectively. In a similarway it
can be argued that the Hamiltonian minimization Eqs. (44) and (45) give TBS⁎ = 0 and TBR⁎ = − |TBRmax| for the downshift process.
xperimental testbed. (A) Traction motor, (B) solenoid actuator for the band brake (ring brake), (C) transmission housing, (D) load motor, (E) sun shaft,
noid actuator for multi-plate brake (sun brake), (G) multi-plate brake pack, (H) output of the transmission (output carrier) and timing belt, (I) band brake,
t of the transmission (input carrier) and (K) flexible coupling.



(a) Multi-plate brake for the sun gear (b) Band brake for the ring gear

Fig. 7. Ring and sun gears mounted on the sets of ball bearings.
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4.2.2. Minimum energy dissipation controller
For the system (Eq. (32)) with the initial and terminal conditions (Eqs. (33) and (34)), the minimum energy dissipation control

problem is equivalent to:
Table 2
Parame

rR,in (
rR,out
rS,in (m
rS,out (
rP,in (m
rR,out
CR (N
CS (N
Kd (N
JM
min
u

Z t f

t0

− TBS þ TS f

� �
ωS− TBR þ TRf

� �
ωR dt: ð49Þ
Replacing ωR from Eq. (5) gives the cost functional as
min
u

Z t f

t0

− TBS þ TS f−
1
R2

TBR þ TRf

� �� �
ωS− 1þ 1

R2

� �
TBR þ TRf

� �
ωC;out

� �
dt ð50Þ
that results in the Hamiltonian in the form:
H ωS;p; TBS; TBRð Þ ¼ p −ASωS þ BS1TBS−BS2TBR þ GSð Þ− TBS þ TS f−
1
R2

TBR þ TRf

� �� �
ωS− 1þ 1

R2

� �
TBR þ TRf

� �
ωC;out: ð51Þ
Based on the Minimum Principle, the dynamics for the optimal adjoint process p⁎ is given by:
p
� � ¼ −

∂H ωS; p
�
; TBS; TBRð Þ

∂ωS
¼ p�AS þ TBS þ TS f−

1
R2

TBR þ TR f

� �� �
: ð52Þ
The Hamiltonian minimization condition with respect to TBS gives
p�BS1−ω�
S

	 

T�
BS≤ p�BS1−ω�

S

	 

TBS ð53Þ
for all − |TBS
max| ≤ TBS ≤ 0, and the Hamiltonian minimization with respect to TBR gives
−p�BS2 þ
ω�

S

R2
− 1þ 1

R2

� �
ωC;out

� �
T�
BR ≤ −p�BS2 þ

ω�
S

R2
− 1þ 1

R2

� �
ωC;out

� �
TBR ð54Þ
ters of the experimental apparatus.

m) 6e−2 IR (kg·m2) 3e−3 μP 0.14
(m) 6e−2 IS (kg·m2) 8e−4 μD 0.18
) 3e−2 IC,in (kg·m2) 1.4e−3 n 2
m) 15e−3 IC,out (kg·m2) 6e−3 θD (rad) 4.014
) 15e−3 IP,in (kg·m2) 6.08e−6 Ri (m) 0.054

(m) 22.5e−3 IP,out (kg·m2) 3.12e−5 Ro (m) 0.0675
m·s/rad) 0.0034 mP,in (kg) 0.0512 RD (m) 0.0755
m·s/rad) 0.00105 mP,out (kg) 0.12113 TRf (Nm) 0.33
m/rad) 161.84 Ko (Nm/rad) 150 TSf (Nm) 0.12

5.9e−5 Jv (kg·m2) 3.17e−04 ifd 1



Table 3
Parameters of the backstepping controller.

KI KII KIII KIV KV

1300 1200 2000 3400
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for all− |TBR
max| ≤ TBR ≤ 0.With thefixed terminal values specified in Eqs. (33) and (34) the terminal condition Eq. (40) results in:
H ω�
S;p

�
; T�

BS; T
�
BR

	 
 ¼ 0 ð55Þ
which, similar to the minimum shifting time case, it also holds for all t ∈ [t0 tf]. Noting that ωS
⁎ ≥ 0 for all t ∈ [t0 tf] and
ω�
S

R2
− 1þ 1

R2

� �
ωC;out ≡−ω�

R ≤ 0 ð56Þ
the optimality conditions (Eqs. (53) and (54)) result in TBS⁎ = − |TBS
max|, TBR⁎ = 0 when p�≥ ω�

S
BS1

for the upshift operation and TBS⁎ = 0,
TBR⁎ = − |TBR

max| when p�≤− ω�
R

BS2
for the downshift process. The existence of an adjoint process satisfying Eq. (52) and lying within

the region determined by p�≥ ω�
S

BS1
for the upshift process and p�≤− ω�

R
BS2

for the downshift operation verifies that the minimum energy
dissipation controller is equivalent to the minimum shifting time controller.

4.3. Backstepping controller design

Implementation of the optimal control law designed in the previous section is rigorous in practice due to sudden engagement and
disengagement of the brakes which eventuate in sudden variation of the motor torque. Therefore in this section, based on the results
of the optimal controller, a feasible controller is designed by replacing the sudden engagement and disengagement of the brakeswith
smooth variations of the braking torques that can be provided by the actuators. The backstepping approach is utilized due to the non-
linear and cascade structure of dynamical Eq. (23). The backstepping technique provides a stabilizing feedback law with the simulta-
neous proof of the stability.

In order to start the recursive procedure of the backstepping controller design, the dynamic equations ofωw and To in Eq. (23) are
rewritten according to the kinematic Eq. (5):
ω
�

w ¼ −1
Jv

Tv þ
i f d
Jv

To

T
�

o ¼ −i f dKoωw þ KoωC;out

8><
>: : ð57Þ
Choosing the first Control Lyapunov Function (CLF) as:
V1 ωwð Þ ¼ 1
2

ωw−ωw;des

� �2 ð58Þ
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(b) Brake forces during the down shift

Fig. 8. Normalized brake force profiles applied to both experimental and simulation tests during the upshift and downshift operations.
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Fig. 9. The motor (ωM) and output (ωw) speeds for the upshift operation.
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and the virtual control as:
Φ ¼ To;des ¼
Jv
i f d

1
Jv
Tv−KI ωw−ωw;des

� �� �
ð59Þ
the time derivative of the Eq. (58) becomes:
V
�

1 ωwð Þ ¼ −KI ωw−ωw;des

� �2 ð60Þ
which is clearly negative definite and implies asymptotical stability of ωw.
Considering the first backstepping change of variables as follows (the backstepping variables are appeared in higher order terms

by exploiting the modularity of the method):
ϖ ¼ To−To;des ¼ To−Φ: ð61Þ
This gives:
To ¼ ϖ þΦ⇒ T
�

o ¼ϖ
� þ Φ

�

: ð62Þ
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Fig. 10. The ring (ωR) and sun (ωS) speeds for the upshift operation.
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Fig. 11. The variation of the gear ratio (GR) for the upshift operation.
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In Eqs. (57), (61) and (62) the first back stepping variable can be seen in the equations as follows:
ω
�

w ¼ −KI ωw−ωw;des

� �
þ i f d

Jv
ϖ

ϖ
� ¼ −i f dKoωw þ KoωC;out− Φ

�

8><
>: : ð63Þ
By incorporation of ϖ in the Lyapunov function:
V2 ωw;ϖð Þ ¼ 1
2

ωw−ωw;des

� �2 þ 1
2

ϖð Þ2 ð64Þ
and considering a CLF for the second order sub systems Eq. (63):
ϒ ¼ ωC;out;des ¼ −
i f d
Ko Jv

ωw−ωw;des

� �
þ i f dωw þ 1

Ko
Φ
�

−
KII

Ko
ϖ ð65Þ
the Lyapunov function time derivative becomes negative definite:
V
�

2 ωw;ϖð Þ ¼ −KI ωw−ωw;des

� �2
−KIIϖ

2 ð66Þ
and clearly ensures that (ωw, ϖ) = (ωw,des, 0) is asymptotically stable.
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Fig. 12. The output torque (To) for the upshift operation.
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Fig. 13. The motor (ωM) and output (ωw) speeds for the downshift operation.
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In order to proceed with the second backstep, the second change of variable is considered as:
σ ¼ ωC;out−ωC;out;des ¼ ωC;out−ϒ: ð67Þ

The Eqs. (23), (63) and (65) give:
ω
�

w ¼ −KI ωw−ωw;des

� �
þ i f d

Jv
ϖ

ϖ
� ¼ −KIIϖ−

i f d
Jv

ωw−ωw;des

� �
þ Koσ

σ
� ¼ Aσ þ BσTd þ Cσ ϖ þΦð Þ− ϒ

�

8>>>>><
>>>>>:

ð68Þ
with:
Aσ ¼ 1
a R2 þ 1ð Þ R2γ−λð Þð TBR þ τ−R2λð ÞTBS

þ R2λ−τð ÞCSωS þ λ−R2γð ÞCRωR

þ R2γ−λð ÞTRf þ τ−R2λð ÞTS f Þ

Bσ ¼ R2eþ c
a R2 þ 1ð Þ

Cσ ¼ −
R2 f þ d
a R2 þ 1ð Þ:

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

ð69Þ
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Fig. 14. The ring (ωR) and sun (ωS) speeds for the downshift operation.



24 24.5 25 25.5 26 26.5 27 27.5 28 28.5 29
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

Time (s)

G
ea

r 
R

at
io

Gear Ratio (Experimental Test)
Gear Ratio (SimDriveLine Simulation)

1st Gear (GR
1
=1.667)

2nd Gear (GR
2
=0.833)
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A candidate Lyapunov function to ensure the stability of the system Eq. (68) is:
V3 ¼ 1
2

ωw−ωw;des

� �2 þ 1
2

ϖð Þ2 þ 1
2

σð Þ2 ð70Þ
and applying the virtual control law:
Ψ ¼ Td;des ¼
1
Bσ

−Aσ−Koϖ−Cσ ϖ þΦð Þþ ϒ
�

−KIIIσ
� �

ð71Þ
makes the Lyapunov derivative negative definite:
V
�

3 ¼ −KI ωw−ωw;des

� �2
−KII ϖð Þ2−kIII σð Þ2 ð72Þ
which clearly ensures the asymptotically stability of the system Eq. (68) around the point (ωw, ϖ, σ) = (ωw,des, 0, 0).
Considering the next backstepping change of variables as:
ζ ¼ Td−Td;des ¼ Td−Ψ ⇒ ζ
�

¼ T
�

d− Ψ
� ð73Þ
transforms the system Eq. (68) to (according to Eq. (23)):
ω
�

w ¼ −KI ωw−ωw;des

� �
þ i f d

Jv
ϖ

ϖ
� ¼ −KIIϖ−

i f d
Jv

ωw−ωw;des

� �
þ Koσ

σ
� ¼ −KIIIσ−Koϖ þ Bσζ
ζ
�

¼ KdωM−KdωC;in− Ψ
�

8>>>>>>><
>>>>>>>:

: ð74Þ
Choosing the CLF as follows:
Γ ¼ ωM;des ¼
1
Kd

KdωC;inþ Ψ
�

−Bσσ−KIVζ
� �

ð75Þ
for the candidate Lyapunov function:
V4 ¼ 1
2

ωw−ωw;des

� �2 þ 1
2

ϖð Þ2 þ 1
2

σð Þ2 þ 1
2

ζð Þ2 ð76Þ
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ensures the stability of the system Eq. (74) by making the derivative of the Lyapunov function Eq. (76) negative definite:
V
�

4 ¼ −KI ωw−ωw;des

� �2
−KII ϖð Þ2−kIII σð Þ2−KIVζ

2
: ð77Þ
The last backstepping change of variable is considered as:
ξ ¼ ωM−ωM;des ¼ ωM−Γ⇒ ξ
�

¼ ω
�

M− Γ
� ð78Þ
which transforms the system Eqs. (23) and (74) to
ω
�

w ¼ −KI ωw−ωw;des

� �
þ i f d

Jv
ϖ

ϖ
� ¼ −KIIϖ−

i f d
Jv

ωw−ωw;des

� �
þ Koσ

σ
� ¼ −KIIIσ−Koϖ þ Bσζ
ζ
�

¼ −KIVζ−Bσσ þ Kdξ

ξ
�

¼ 1
JM

TM− Ψþ ζð Þð Þ− Γ
�

8>>>>>>>>>>><
>>>>>>>>>>>:

: ð79Þ
Considering the motor torque as:
TM ¼ Ψþ ζð Þ þ JM −Kdζþ Γ
�

−KVξ
� �

ð80Þ
makes the derivative of the candidate Lyapunov function:
V5 ¼ 1
2

ωw−ωw;des

� �2 þ 1
2

ϖð Þ2 þ 1
2

σð Þ2 þ 1
2

ζð Þ2 þ 1
2

ξð Þ2 ð81Þ
negative definite as follows:
V
�

5 ¼ −KI ωw−ωw;des

� �2
−KII ϖð Þ2−kIII σð Þ2−KIVζ

2−KVξ
2 ð82Þ
which clearly ensures asymptotic stability of the dynamical system Eq. (79):
ωw;ϖ;σ ; ζ ; ξð Þ→ ωw;des;0; ; ;0; ; ;0; ; ;0
� �

:

The motor torque in Eq. (80) is equivalent to:
TM ¼ Td þ JM −Kd Td−Td;des

� �
þω

�

M;des−KV ωM−ωM;des

� �� �
: ð83Þ
5. Simulation and experimental results

In the simulation analysis, the driveline of an electric vehicle equipped with the transmission proposed in this paper, as shown in
Fig. 1, has been modeled in MATLAB/Simulink® by utilizing the SimDriveLine library. The MATLAB/Simulink®model is depicted in Fig. 5.

The experimental apparatus shown in Fig. 6 is developed at the Centre for IntelligentMachines (CIM) ofMcGill University and it is
composed of two planetary gear sets with common ring and common sun gears. The ratios of the first and the second planetary gears,
asmentioned in Section 2, are R1=2 and R2=4, respectively. Twomotors are connected to the input and output carriers of the trans-
mission where the motor connected to the input carrier replaces the main traction motor in the vehicle, and the motor connected to
the output carrier is used to mimic the loads on the vehicle. The traction and load motors are identical with the rated torque 2.1 Nm,
the rated speed 314 rad/s and themoment of inertia 5.9 × 10−5 kg·m2. The brake actuators are linear solenoids for which the relation
between the applied current to the solenoid and the resulting force in 5mmair gap ismeasured experimentally and thefitted curve to
the experimental data has the following relation:
F ¼ −8:097I3 þ 47:73I2−21:13I ð84Þ
where F is themagnetic force of the solenoid in Newtons and I is the applied current in Amperes. The brake of the sun is designed to be
of the multi-plate brake type with 4 friction surfaces illustrated in Fig. 7(a). The brake of the ring gear is designed to be of the band
brake type with the wrap angle 4.014 (rad) which is shown in Fig. 7(b).



24 24.5 25 25.5 26 26.5 27 27.5 28 28.5 29
0

0.5

1

1.5

2

2.5

3

Time (s)

T
or

qu
e 

(N
m

)

T
o
 (Experimental Test)

T
o
 (SimDriveLine Simulation)

Fig. 16. The output torque (To) for the downshift operation.
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For the apparatus shown in Fig. 6, the values of themass andmoment of inertia of the components, the Coulomb and viscous fric-
tion models and the coefficient of the friction of the brakes are estimated based on the time domain input–output data in MATLAB
System Identification Toolbox. The stiffness and damping parameters of the input and output shafts are acquired from the datasheets
and the radii of the drum of the band brake, the brake plates and the gears are obtained by direct measurements. The mass and
moment of inertia of the components are verified with their 3D CAD models. The obtained parameters are listed in Table 2.

The simulation and experimental tests are carried out for a sample drive cycle with a duration of 50 s which has one upshift at t=
16 s and one downshift at t = 26 s. The resisting torque of the load motor is considered to be a quadratic function of the angular
velocity with the equation Tv = 0.0004ωw

2Nm in order to mimic the aerodynamic drag torque on the vehicle which is the dominant
resisting load at high speeds [12,37].

The designed backstepping controller with the parameters given in Table 3 is applied to both experimental and simulation tests to
maintain the output torque and the output speed constant. The applied brake forces for both experimental and simulation tests are
shown in Fig. 8 with NBS,max = 110 N and NBR,max = 30 N.

For practical reasons, instead of direct measurement of the torques on the input and the output shafts, an stochastic observer is
employed in order to estimate Td and To from the dynamical Eq. (23) using the measured values of the states ωM and ωw and the
known values of the input torques TM, TBS and TBR.

For clarity of the figures, the results of themathematical model are not shown because they exactly fit the simulation results from
the SimDriveLine model.

The simulation and experimental results for the upshift process are illustrated in Figs. 9–12 and the results of the downshift oper-
ation are demonstrated in Figs. 13–16. The frequency of data acquisition for both experimental and simulation tests are 1000 Hz. The
motor (ωM) and output (ωw) speeds during the upshift and downshift operations are illustrated in Figs. 9 and 13. It can be observed
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that during the synchronization of the motor with the speed of the driveline in the target gear, the designed controller effectively
maintained the output speed to such a point that the oscillation of the output speed at 511 RPM is suppressed in the simulation anal-
ysis, and in the experimental test, it remains less than 10%. It should be noted that, unlike the torque and inertia phases in controlling
DCTs and ATs, in the proposed transmission, synchronization of themotor speed and switching the brakes happen simultaneously as
discussed in Section 4.

In Fig. 8, disengagement of the off-going brake and engagement of the oncoming brakes start at t=16 s and t=26 s for the upshift
and downshift operations, respectively. However, the synchronization of themotor starts later than t=16 s and t=26 s in Figs. 9 and
13. This delay corresponds to the time reserved for the preparation of the oncoming and off-going brakes. In other words, this delay is
related to pre-fill the oncoming brake and to bring the off-going brake to slip mode. By considering the time of preparation of the
oncoming and off-going brakes in the shifting time, the upshift and downshift processes last respectively about 0.6 s and 0.8 s in
the simulation, and they take about 0.8 s and 1 s in the experimental test.

The angular velocities of the ring (ωR) and sun (ωS) gears for the upshift and downshift operations are shown in Figs. 10 and 14. It
can be seen that during the upshift process the sun gear is grounded and the ring gear is released and the opposite case holds for the
downshift operation.

The variation of the gear ratio for the upshift and downshift processes are demonstrated in Figs. 11 and 15, respectively. This var-
iation can be used as a criterion to measure the duration of the gear changing process.

The output torque for the upshift and downshift operations are illustrated in Figs. 12 and 16. It can be seen that the oscillation of
the output torque during the gear changing process in the simulation is negligible and in the experimental test, it remains less than
15%. The oscillation of the output torque and output speed and the increase in the shifting time in the experimental test in comparison
to simulation results come from unmodeled uncertainties in the dynamical model of the system and actuators, such as unmodeled
uncertainties in the complex friction model of the internal gears, the variation of the viscosity of the transmission oil used for the ex-
perimental test by increasing the temperature, uncertainties in the position of the solenoid's plunger due to compression of themulti
brake plates and deformation of the bandwhich results in the deviation of TBS and TBR from the desired values, and unmodeled uncer-
tainties in the resistance of the solenoid actuators which comes from the variation of the temperature of the coil which causes uncer-
tainness in the resulting force.

Transitions between slip and stick phases at the end of gear shifting operation in the experimental results are different from the
theoretical results (i.e., the simulation results) in the upshift process in Figs. 9–11 and the downshift in Figs. 13–15. These differences
are due to the consideration of friction torques in simulations in the form of Coulomb and Stribeck friction [38,39], that is not an exact
representative of the behavior of frictional torques of the brakes in the experimental testbed.

Brake friction torque, themotor torque applied to both the computermodel and the experimental setup, and the simulated output
torque of the transmission are illustrated in Figs. 17 and 18 for the upshift and downshift operations, respectively. As illustrated in
these figures, the additional motor torque required for the compensation of the slip friction on the brakes disappears at the end of
gear shifting process when the oncoming brake comes to rest in the stick mode.

The effect of engagement and disengagement intervals of the oncoming and off-going brakes from 0.1 s to 1.5 s (0.1, 0.3, 0.6, 0.9,
1.2, and 1.5) on the shifting time and the energy dissipation for the upshift and downshift processes are illustrated in Fig. 19. It can be
seen that increasing the engagement and disengagement intervals from 0.1 s to 1.5 s increases the shifting time from 0.18 s to 1.04 s
for the upshift process and 0.46 s to 1.53 s for the downshift operation. The growth of the energy dissipation caused by the internal
brakes of the transmission during the gear changing process are from 51.7 J to 96.23 J and from 18.8 J to 36.83 J for the upshift and
downshift operations, respectively. This verifies that the smallest interval i.e., the case with sudden engagement and disengagement
of the oncoming and off-going brakes corresponds to theminimum shifting time andminimumdissipated energy, as indicated by the
results of the Pontryagin Minimum Principle in Section 4.
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6. Conclusion

In this paper, a novel seamless two-speed transmission for electric vehicles is proposed. Kinematic analysis of the transmission and
achievable gear ratios are presented. The analytical dynamic model of the driveline of an electric vehicle equippedwith the proposed
transmission is derived based on kinematic analysis and by utilizing the torque balance and virtual work principle. Thereafter, the
PontryaginMinimum Principle is used to derive an optimal control law to minimize the shifting time and the energy dissipation dur-
ing the gear changing process while keeping the output speed and output torque constant. The optimal control problem results in a
bang–bang type control law for the oncoming and off-goingbrakeswhile the correspondingoptimal trajectories for Td and Tomaintain
the output speed and output torque constant during the gear change. In order to provide a closed-loop controller based on the results
of the Pontryagin Minimum Principle and due to the recursive and nonlinear dynamics of the driveline in Eq. (23) the backstepping
method is applied to design a controller that tracks the optimal trajectories while relaxing the abrupt changes in the control inputs to
cope with the actuator limitations.
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The mathematical model of the driveline has been validated with experimental tests and SimDriveLine library of MATLAB/
Simulink® and the performance of the designed controller has been evaluated. The simulation results indicate that the torque hole
is almost eliminated in both experimental and simulation results while the oscillation of the output torque and output speed during
the gear changing is negligible. While a completely seamless operation is shown to exist theoretically, due to uncertainties in the
modeling of the system and actuators in the experimental test rig the output speed and output torque deviate from their desired
values in amounts less than 10% and 15%, respectively.

In the study the effect of engagement and disengagement intervals of the oncoming and off-going brakes, simulation results indi-
cate that increasing the engagement and disengagement intervals of the oncoming and off-going brakeswill increase the shifting time
and the energy dissipation caused by the internal brakes of the transmission dramatically. Theminimum shifting time and the energy
dissipation corresponds to the sudden engagement and disengagement of the brakes as expected from the results of the Pontryagin
Minimum Principle.

Further research on this topic is under development at the Centre for IntelligentMachines (CIM) ofMcGill University in the follow-
ing three phases:

Phase I Designing an H∞ robust controller to reject disturbances and noise and cover uncertainties in the modeling of the systems
and actuators.

Phase II Estimation of the braking torques in order to improve the shifting quality.
Phase III Analysing the performance of the proposed transmission with the designed controllers in the actual vehicle scale equipped

with torque transducer.
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