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Parametric excitation for MEMS gyroscopes can provide resonance in both the drive and
the sense modes, even with mismatched natural frequencies. In this paper, requirements
for such a condition are studied by analyzing the effect of each factor on the steady state
amplitudes of the two modes. To develop a general study, the governing equation of the
gyroscope is scaled and non-dimensionalized. The resulting governing equation is in the
form of a cubic Mathieu equation coupled to a Duffing equation. In the study of the scaled
system, for a gyroscope with matched natural frequencies, three sets of optimum designs
are obtained. Then, the robustness of parametric excitation for a gyroscope with mismatch-
ing modes is shown. As the results indicate, parametric excitation is able to provide high
accuracy and robustness for MEMS gyroscopes.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction

MEMS gyroscopes are widely used in many applications
because of their incredible properties of being small, light,
highly reliable, low power consuming and cheapness.
These devices are so small that can be integrated with
the electronic circuits required for their operation. These
factors have widened the use of gyroscopes to many indus-
tries. For instance, in automotive applications they are
used for vehicle stability control, navigation assists and
roll-over detection. In addition, in electronic industries,
gyroscopes are used in image stabilizers of cameras,
hand-held GPSs, 3D input devices and virtual reality.
MEMS Gyroscopes are also used in robotics for various
control purposes.

Because in microscale, fabrication of rotating parts con-
fronts many problems, almost all MEMS gyroscopes are
vibratory-type. In vibrating gyroscopes, a part of the sensor
is always vibrating in one direction called the drive mode. If
there is an outside rotation rate, the resulting Coriolis
force, which is two times the cross-product of the present
velocity vector and the rotation vector (2v �X), induces
vibrations in one or more directions called the sense
mode(s). There are two approaches for measuring the
unknown rotation rate from this phenomenon: open-loop
and closed-loop [1]. The first approach, which is an open-
loop method, is to measure the amplitude of vibration in
the sense modes. The other technique is a closed-loop
method that calculates the unknown rotation rate from
the required control signal to counterbalance the
vibrations in the sense modes and neutralize it. In most
cases, the open-loop approach is utilized and so is in this
paper.

Various designs for MEMS gyroscopes have been
proposed and used such as Lumped Mass(es) [1–8], Tuning
Forks [1,6], Ring-Type [1,6,9] and Cantilever-Type [10–14]
gyroscopes. For instance, Fig. 1 shows the structure of a
MEMS gyroscope consisting of a single lumped mass which
is considered in this paper. As stated earlier, an actuation
force produces vibrations in the drive mode: x-direction.
If the frame of the gyroscope has a rotation rate Xz in the
z-direction, the resulting Coriolis force induces vibrations
in the sense mode: y-direction. In most vibrating
gyroscopes, the actuation force is a simple harmonic
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Nomenclature

Physical parameters
X coordinate in the drive mode
y coordinate in the sense mode
z coordinate in 3rd dimension of the coordinate

system
t time
m mass of the proof mass
cx and cy damping in the x and y directions
kx1 and ky1 linear terms of stiffness in the x and y direc-

tions
kx3 and ky3 cubic terms of stiffness in the x and y direc-

tions
Xz rotation rate of the frame of the gyroscope

which is considered to be only in the z direction
Fa the actuating force
r1 linear parametric excitation coefficient
r3 cubic parametric excitation coefficient
V(t) actuation voltage
Va amplitude coefficient of the actuation voltage

xd
max and yd

max the desired maximum amplitudes in the x
and y directions

L specific length

Scaled parameters
ax and ay scaled damping in the x and y directions
b1 linear parametric excitation factor
b3 cubic parametric excitation factor
dx1 and dy1 scaled linear stiffness in the x and y directions
dx3 and dy3 scaled cubic stiffness in the x and y directions
c scaled rotation rate of the frame
s scaled time
(�)0 derivative with respect to the scaled time s
u and v scaled coordinates in the x and y directions
umax and vmax maximum amplitudes in the u and v direc-

tions obtained from simulation of the non-
dimensional system
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function. This excitation function has many benefits both
in mathematical analysis and in physical operation of the
sensor. However, one problem associated with harmonic
excitation is that in order to have high amplitudes, specif-
ically in the sense mode, the actuation frequency should
coincide with the natural frequencies of both the drive
and the sense modes [1–4,15]. Although applying the exci-
tation frequency in a desired value is possible, it might not
be feasible to meet near-resonance conditions in both
modes since imperfections in fabrication process result in
different natural frequencies in the drive and the sense
modes, which in turn result in a low quality factor (Q) for
the sensor [1].
y
x

z

Free StateDeformed State

Drive MechanismSense Mechanism

Ω

Fig. 1. Structure of the MEMS gyroscope considered in this paper.
To overcome the mentioned problem, a number of
methods have been proposed and applied. These methods
can be classified into three main categories. The first cate-
gory employs some manufacturing tips and post-fabrica-
tion tunings. For instance Alper et al. [2–4] proposed a
structure for providing a decoupled tunable spring struc-
ture and suggested some manufacturing tips such as add-
ing an extra set of combs to tune the frequencies
electrostatically. Also Liu et al. [16] matched the modes
using improved spring beams by optimizing the shape of
the suspension beams by a cellular automata approach.
The second category is based on using some closed loop
control techniques to match the modes. For example, one
can refer to Batur et al. [5], Sung et al. [17,18] and Chang
et al. [19]. These two approaches increase the cost of the
sensor because of either extra manufacturing processes
or additional electronics. However, the third category
implements parametric resonance instead of harmonic res-
onance [15,20–22].

Parametric resonance has previously been imple-
mented and utilized in various systems such as micro-
beams [23,24], mass sensors [25–30] and other systems.
The benefit of parametric excitation is that resonance can
be met even in frequencies far away from the natural
Table 1
The derivative operator and the scaling
parameters.

ax ¼ 2cx
mx ay ¼ 2cy

mx

b1 ¼
2r1 V2

A
mx2 b3 ¼

2r3 V2
A

mx2

dx1 ¼ 4ðkx1þr1V2
AÞ

mx2 � c2

4
dy1 ¼ 4ky1

mx2 � c2

4

dx3 ¼ 4ðkx3þr3V2
AÞ

mx2 dy3 ¼ 4ky3

mx2

c ¼ 4Xz
x

2s = xt

ð:Þ0 ¼ dð�Þ
ds
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frequency of the system. The idea of employing parametric
resonance for MEMS gyroscopes was first proposed by Oro-
peza-Ramos et al. [15,20–22]. However, as shown in this
paper, the previously proposed design does not meet full
resonance conditions and there exist much higher
amplitude resonance orbits (around 1000 times larger)
with better dynamic responses for such a device (around
10 times faster and with no overshoot in the transient
response).

In this paper, in order to find the most desirable perfor-
mance of the gyroscope, the effect of each factor on the
response of the sensor is studied. Since there are too many
parameter values to be selected (see Eq. (4) and Table 1),
the number of design values is reduced using the design
considerations in Section 3. Then in Section 4, the effect
of each parameter on the output amplitude is studied
and the optimal sets of parameter values are determined.
The study shows that there are distinct regions in which
the amplitude in the sense mode is significantly amplified
due to resonance. For the range studied in this paper, three
sets of such regions are determined and presented in
Section 4.
2. Governing equations

The structure of the gyroscope considered in this paper
is illustrated in Fig. 1 both in its unforced position (dashed
lines) and its deflected state (solid lines). The structure of
the suspension system is selected as shown in the figure
in order to provide decoupled stiffness in the two direc-
tions [2–4]. According to the general governing equation
derived in Appendix A, Eq. (1) shows the governing equa-
tion for the gyroscope based on the following assumptions:

a. The frame has negligible acceleration.
b. The frame’s rotation rate is constant and is only in

the z direction.
c. Motion in the z direction is restricted by compara-

tively higher stiffness resulting in z ¼ _z ¼ €z ¼ 0.
d. Dissipation is considered to behave as viscous

damping (linear behavior).
e. Cross-coupling stiffness and damping are negligible.
f. The restoring force (stiffness) is considered to act

cubically as Fr
xðxÞ ¼ kx1xþ kx3x3 and Fr

yðyÞ ¼ ky1yþ
ky3y3.

m€xþ cx _xþ kx1xþ kx3x3 ¼ Fa þ 2mXz _yþmxX2
z

m€yþ cy _yþ ky1yþ ky3y3 ¼ �2mXz _xþmyX2
z

(
ð1Þ

Eq. (1) is the general Equation of motion for the considered
MEMS gyroscope. As stated earlier, the actuation force Fa is
the key factor in the operation of the sensor since it pro-
vides vibrations in the drive mode. Note that the exciting
force in the sense direction is the Coriolis force �2mXz _x.
Thus, in order to meet resonance conditions and hence,
to have high amplitudes in the sense mode, this force
should possess a large magnitude and a spectrum contain-
ing frequencies near the sense mode’s natural frequency.
Note that the only time-varying term in the Coriolis force
in the sense mode is _x. Consequently, x should meet the
mentioned conditions (the frequency content should be
near the sense mode’s natural frequency), which in turn re-
quires the same conditions in the drive mode. In other
words, the actuating force must provide resonance in the
drive mode and this resonance response is required to con-
tain mostly the frequency required to resonate the sense
mode. This is the idea behind resonance-based MEMS
gyroscopes.

If harmonic excitation is used, the natural frequency of
the drive mode and the sense mode should be the same or
at least very close to each other. However, in microfabrica-
tion, there are always unavoidable asymmetries that result
in mismatched natural frequencies [1]. As a result, if one is
interested in fabricating a resonance-based highly sensi-
tive gyroscope, they are required to take some extra
actions like post-fabrication tunings or closed loop control
techniques. In Section 1, a brief review of these methods
was presented.

In contrast, if parametric excitation is used for the actu-
ation mechanism, resonance can be provided in both the
drive and the sense modes. This is because of the fact that
for parametric excitation, resonance in the drive mode oc-
curs even with actuating frequencies far from the natural
frequency. As a consequence, parametric resonance does
not necessarily require matched modes and it is robust to
mode mismatching. Implementing this idea for MEMS
gyroscopes was first proposed by Oropeza-Ramos et al.
[15,20–22]. As they suggested, an actuation function in
the form of Eq. (2) and an actuating voltage in the form
of Eq. (3) meet the desired goal.

Faðx; tÞ ¼ �ðr1xþ r3x3Þ½VðtÞ�2 ð2Þ

VðtÞ ¼ VA

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ cos xt

p
ð3Þ

Substituting Eqs. (2) and (3) in Eq. (1) and using the
scaling parameters presented in Table 1, the scaled
equation of motion can be presented as in

x00 þ axx0 þ ðdx1 þ 2b1 cos 2sÞxþ ðdx3 þ 2b3 cos 2sÞx3 � cy0 ¼ 0
y00 þ ayy0 þ dy1yþ dy3y3 þ cx0 ¼ 0

(

ð4Þ
The scaled equation of motion (Eq. (4)) is in the form of

a Cubic Mathieu Equation coupled to a Duffing Equation. In
order to obtain parametric resonance in the sensor,
Oropeza-Ramos et al. [15,20–22] determined the required
excitation parameter values based on a frequency response
analysis on an existing gyroscope. However, a parametric
study on design of the gyroscope [31] indicates that this
method would not necessarily result in the highest possi-
ble amplitudes for the sensor. In this paper, a systematic
method to find the maximum output amplitudes for the
considered gyroscope is presented. For this purpose,
the scaled governing equation (Eq. (4)) is considered and
the effect of each parameter value on the output amplitude
is studied. There are 10 scaled parameters whose values
influence the system response. Among these 10, the scaled
rotation rate (c) is the input to the system and the other 9
are design parameters. In order to decrease the number of
design parameters, we assume the design considerations in
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Section 3. This way, there remain only 5 parameter values
which can significantly influence the dynamic response. In
Section 4, the effect of these values on the output ampli-
tude is studied and the optimal values for them are
indicated.

3. Design considerations

As discussed earlier, parametric resonance for a MEMS
gyroscope does not necessarily require matched frequen-
cies and it is robust to mode mismatching. So in general,
different values can be considered for the stiffness in each
direction, and based on the values selected, different sets of
resonating parameters are found; while the gyroscope is
still robust to differences in the stiffness values. In this
paper, design procedure is based on equal natural frequen-
cies and the robustness of this design to mismatching is
studied. This means that the system is considered to have
equal stiffness in both the drive and the sense modes
(kx1 = ky1 and kx3 = ky3). Thus form Table 1, we can write

dx1 ¼ dy1 þ 2b1

dx3 ¼ dy3 þ 2b3

�
ð5Þ

Since the damping for this device is significantly due to
the ambient pressure, damping is also considered to be
the same in these two modes, i.e. ax = ay = a. However,
the procedure is not changed if different damping in the
two modes is considered. As will be discussed later (see
Section 4 and Fig. 5), the damping value has negligible ef-
fect on the steady state signal in the drive mode and it
just determines the time required for dissipation of the
transient response. However, damping has a great effect
on the amplitude of the response in the sense mode
(see Fig. 6). In our design procedure, we consider the rea-
sonable value of 0.01 for the scaled damping a which pro-
vides high amplitude in the sense mode and a good time
constant for the whole system. Note that since it is a de-
sign problem, in addition to changing the damping coeffi-
cient (c) by controlling the ambient pressure (which is
common in fabrication of gyroscopes), the values of mass
(m) and the excitation frequency (x) can also be selected
such that the scaled damping (a) from Table 1 meets the
desired value.

The scaled rotation rate (c) is the coupling term be-
tween the drive and the sense modes and hence, it might
be desirable that c be large. However, from Table 1 we
see that during operation, a large c changes the scaled stiff-
ness in both the drive and the sense modes. As a matter of
fact, a large c moves the working conditions of the system
away from resonance and results in a remarkable loss in
the sensitivity of the gyroscope. Note that c is not directly
a design parameter, and only its range can be determined
by the designer based on the desired readings of the sen-
sor. As will be discussed later (see Section 4 and Fig. 3), a
small change in a resonant dy1 value contributes to a
remarkable loss in the output amplitude of the gyroscope.
As a conclusion, c should be small, such as in the order of
magnitude of 10�2 to 10�3, so that while operating, c2

would not be able to change dy1 from its desired value. In
the design procedure, we consider the nominal value of
10�3 for c and then show the output of the designed gyro-
scope for different values of c (see Section 4 and Fig. 7).

In order to perform a non-dimensional analysis on the
system, we define the specific-length L and scale all the
lengths with respect to it. The non-dimensional equation
for the gyroscope is presented in Eq. (6) where u , x/L
and v , y/L so x = L u and v = L y.

u00 þ au0 þ ðdx1 þ 2b1 cos 2sÞuþ ðL2dx3 þ 2L2b3 cos 2sÞu3 � cv 0 ¼ 0

v 00 þ av 0 þ dy1v þ L2dy3v3 þ cu0 ¼ 0

(

ð6Þ

From Eq. (6) it can be concluded that the only terms
that have a scaling effect on the amplitudes of the sensor
are the terms containing L i.e. the nonlinear terms L2dx3,
L2dy3 and L2b3 which are only two independent factors
since dx3 = dy3 + 2b3 holds. Using the non-dimensional
equation of motion, the output of the gyroscope for
L2dy3 = 1 is determined and then, based on the required
working dimensions of the sensor, L is chosen using Eq.
(7) in which xd

max and yd
max are the desired amplitudes in

the drive and the sense modes correspondingly and umax

and vmax are the maximum amplitudes obtained from sim-
ulation of the non-dimensional system.

L ¼ xd
max

umax
or

yd
max

vmax
ð7Þ

After this step, the required dx3, dy3 and b3 for the de-
sired amplitudes of gyroscope are determined. Note that
the term L2b3 has a destabilizing effect on the output of
the gyroscope. A thorough study on the effect of this term
is beyond the scope of this paper. It is just mentioned that
since the time-varying term 2L2b3 cos 2s changes the stiff-
ness especially in large values of u, it weakens the stability
of the steady state output of the sensor. In the present
study, we initially consider a zero nominal value for b3

(Fig. 2) and then we study its effect on the output of the
gyroscope (Fig. 4). Note that when b3 = 0, the equality
dx3 = dy3 holds.
4. Parameter values selection

As mentioned earlier, amplitude of the vibrations in the
sense mode is used to measure the unknown rotation rate
imposed to the gyroscope. Hence, in order to have more
accurate readings, it is desired to make the amplitude in
the sense mode as large as possible. In this section, through
a parametric study of the sensor, the values of the scaled
parameters are selected so that the maximum amplitude
is achieved in the sense mode. Once these scaled parame-
ters are selected, the physical parameters can be designed
so that their corresponding scaled parameters satisfy the
values found in this section. Note from Table 1 that the
number of physical parameter values to be selected ex-
ceeds the number of scaled parameters by 4. Hence, the re-
sults found in this section can be brought back to their
corresponding physical parameters in many ways, and for
that, one is free to take other design considerations.

By considering a = 0.01, b3 = 0 and L2dy3 (=L2dx3) = 1 as
discussed in Section 3, the maximum steady state



Fig. 2. Maximum non-dimensional steady state amplitude in (a) drive
mode and (b) sense mode for different values of dy1 and b1.

Fig. 3. Maximum non-dimensional steady state amplitude in sense mode
near dy1 = 1.

Fig. 4. Maximum non-dimensional steady state amplitude in (a) drive
mode and (b) sense mode for different values of b1 and L2b3.
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Fig. 5. Maximum Non-Dimensional Steady State Amplitude in Drive
Mode (top) and Sense Mode (bottom) for different values of a.

A. Pakniyat, H. Salarieh / Measurement 46 (2013) 2661–2671 2665
amplitudes in both the drive and the sense modes for dif-
ferent values of dy1 and b1 are shown in Fig. 2.

Fig. 2 shows that even though the resonance regions in
the drive mode are present for any value of dy1, only for few
numbers of dy1 (in Fig. 2, only for dy1 near 1 and 4) the
vibration produced in the drive mode contains the
required frequency to provide resonance in the sense
mode. This figure also suggests that the value of dy1 is
much more important for the sense mode rather than for
the drive mode. A closer look at Fig. 2b near dy1 = 1
(Fig. 3) shows how a small change in dy1 results in a dra-
matic loss in the sensitivity of the sensor. Therefore, the
most important and critical parameter value that should



(a-I)

(a-II)

0 500 1000 1500 2000 2500 3000

-2

0

2

u

α = 0.003 & β1 = 4.2 & L2β3 = 0 & δy1 = 1 & L2δy3 = 1

0 500 1000 1500 2000 2500 3000

-0.1

0

0.1

v

for γ = 0.001

τ (non-dimensional time)

3115 3120 3125 3130 3135 3140
-2

0

2

u

α = 0.003 & β1 = 4.2 & L2β3 = 0 & δy1 = 1 & L2δy3 = 1

3115 3120 3125 3130 3135 3140
-0.1

0

0.1

v

for γ = 0.001

τ (non-dimensional time)

(b-I)

(b-II)

0 500 1000 1500 2000 2500 3000

-2

0

2

u

α = 0.01 & β1 = 4.2 & L2β3 = 0 & δy1 = 1 & L2δy3 = 1

0 500 1000 1500 2000 2500 3000

-0.1

0

0.1

v

for γ = 0.001

τ

3115 3120 3125 3130 3135 3140
-2

0

2

u

α = 0.01 & β1 = 4.2 & L2β3 = 0 & δy1 = 1 & L2δy3 = 1

3115 3120 3125 3130 3135 3140
-0.1

0

0.1
v

for γ = 0.001

τ

(c-I)

(c-II)

0 500 1000 1500 2000 2500 3000

-2

0

2

u

α = 0.02 & β1 = 4.2 & L2β3 = 0 & δy1 = 1 & L2δy3 = 1

0 500 1000 1500 2000 2500 3000

-0.1

0

0.1

v

for γ = 0.001

τ

3115 3120 3125 3130 3135 3140
-2

0

2

u

α = 0.02 & β1 = 4.2 & L2β3 = 0 & δy1 = 1 & L2δy3 = 1

3115 3120 3125 3130 3135 3140
-0.1

0

0.1

v

for γ = 0.001

τ

Fig. 6. Transient (I) and steady state (II) time responses of the system in drive mode (top) and sense mode (bottom) for (a) a = 0.003, (b) a = 0.01, (c)
a = 0.02.

2666 A. Pakniyat, H. Salarieh / Measurement 46 (2013) 2661–2671



0 0.002 0.004 0.006 0.008 0.01
1

1.5

2

u m
ax

δy1 = 1 & L2 δy3 = 1 & β1 = 4.2 & L2 β3 = 0 & α = 0.01

0 0.002 0.004 0.006 0.008 0.01
0

0.1

0.2

γ

v m
ax

Fig. 7. Maximum non-dimensional steady state amplitude in drive mode
(top) and sense mode (bottom) for different values of c.

0 0.002 0.004 0.006 0.008 0.01
0

1

2

γ

u m
ax

δy = 1 & L2 δy3 = 1 & β1 = 4.2 & L2 β3 = 0 & α = 0.01

0 0.002 0.004 0.006 0.008 0.01
0

0.1

0.2

γ

v m
ax

kx=ky-10%

kx=ky

kx=ky+10%

kx=ky-10%

kx=ky

kx=ky+10%

Fig. 8. Maximum non-dimensional steady state amplitude in drive mode
(top) and sense mode (bottom) for different values of c in presence of a
10% mismatching.

Table 2
The optimum regions for the scaled parameters of the system.

Set 1 Set 2 Set 3 Considerations

dy1 1 1 4 Precise control on this value is
required

b1 4.1–5 13.3–
15

6.4–7 See Figs. 2 and 3

b3 0 0 0 Or as small as possible
i 0.01 0.01 0.01 Or some other value near this
c 0–

10�2
0–
10�2

0–
10�2

Should be kept small, not to
change dy
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be kept constant would be dy1. This is feasible because c is
too small to change dy1 significantly1 and besides, actuation
frequency can easily be tuned to provide such a condition.
1 When c is at most 10�3 to 10�2, it is just able to change dy1 less than
0.25 � 10�6 to 0.25 � 10�4.
The effect of L2b3 in resonance corresponding to dy1 = 1
is shown in Fig. 4. For dy1 = 4 the behavior is similar. Fig. 4
shows that increasing L2b3 decreases the amplitude in both
modes. In addition, as stated before, the third-order para-
metric excitation factor (L2b3) reduces the stability of peri-
odic orbits. This means that L2b3 should be kept as close to
zero as possible, i.e. the parametric excitation should be
linear in the working dimensions of the gyroscope defined
by the maximum amplitude for u. In physical terms, if non-
interdigitated comb fingers are employed to provide para-
metric excitation (for example see [15]), increasing the
number of such fingers decreases the nonlinearity of the
excitation force.

To study the effect of a, we consider the values of
dy1 = 1, L2dy3 = 1, b1 = 4.2 and L2b3 = 0 which are deter-
mined from the above results. For these values, the maxi-
mum steady state amplitude for different values of a
ranging from 10�3 to 1 is shown in Fig. 5.

As Fig. 5 shows, the amplitude in the drive mode does
not depend on a and the periodic response of the gyro-
scope is stable up to a � 0.17, but for a greater than that,
the periodic response becomes unstable and the origin be-
comes stable. As a result, a should be kept below this
value.

The stability of the periodic response of the sensor is
also influenced when a is far below 10�3. A full study on
the effect of a on the stability of periodic orbits is beyond
the scope of this paper. It is just mentioned that by
decreasing a, the ability of the system to fade disturbances
is reduced and therefore, the periodic response of the sen-
sor becomes unstable. For these values of a, the instability
of the periodic response occurs while the origin is also
unstable. Consequently, the system cannot reach a steady
periodic solution. As a conclusion, the value of a should
be kept between 10�3 and 10�1.

From Fig. 5, it might seem that keeping a � 10�3 would
be better than our previous choice a = 10�2, but as Fig. 6 (a,
b, c) shows, even for a = 0.003 the response is too slow and
reaches its periodic orbit after about 1000 excitation cycles
(equivalent to s = 3142). For a = 0.01 this time is about 250
cycles and for a = 0.02 is about 150 cycles which are com-
paratively small. Hence, for these values of a the steady re-
sponse is fast enough because x is usually in the order of
104 to 105 and the response time is related to s by the rela-
tion t = 2s/x (see Table 1). As stated before, the considered
value a = 0.01 results in both a high amplitude in the sense
mode and a fast response in both modes.

The effect of the scaled rotation rate c, which is the
parameter the gyroscope is going to measure, is shown in
Fig. 7. Since the coupling term c is small, it has no signifi-
cant effect on the amplitude of the drive mode. The effect
of c on the amplitude in the sense mode shown in the bot-
tom of Fig. 7 is the calibration curve for the sensor.

To examine the robustness of this design, we consider a
mismatching between the two modes. Note that although
all the factors m, kx, ky and x influence dy1 and dx1, this
mode mismatching can be supposed to be only due to dif-
ference in stiffness of the drive and the sense mode,
because excitation frequency x is always considered to
be tuned in order to keep dy1 = 1. Fig. 8 shows the change
in the output amplitude of the sensor due to a 10%
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mismatching. As this figure shows, although the change in
amplitude of the drive mode is somehow noticeable, the
output of the gyroscope in the sense mode is not changed
significantly even for a large difference in stiffness (±10%).
This shows the robustness provided by parametric reso-
nance. Note that if harmonic resonance was used instead,
even a small difference in the stiffness could reduce the
sense mode amplitude to hundredths of the resonance
amplitude [1,3].

To sum up the results of this section, the three sets of
parameters that contribute to resonance, and consequently
to high amplitudes in the sense mode and more accurate
readings for the gyroscope, are presented in Table 2. Note
that L2dy3 = 1 was considered and also remember that dx1

and dx3 were related to dy1 and dy3 by Eq. (5).
To illustrate the significant improvement in the output

amplitude of the gyroscope with the parameter values lying
in the optimum regions found in this study, in Fig. 9 the dy-
namic response of the previously reported design [15,20–
22] is compared to the optimum dynamic performance
found here. Fig. 9a is brought from [22] and Fig. 9b is the
same as Fig. 6b scaled by L so that it has the same drive
amplitude as Fig. 9a. Comparing these two figures, it is clear
that the optimum performance found in this paper has an
output amplitude as large as large as 1000 times the previ-
ously reported design [15,20–22], which makes the reading
more accurate in the same order of magnitude (i.e. around
1000 times more accurate). In addition, the response is
around 10 times faster in reaching its steady state and,
unlike the previously reported design [15,20–22], it has no
overshoot in the transient response.
5. Conclusion

This paper provides a parametric study on design of a
parametrically excited MEMS gyroscope by studying the
effect of each factor on the readings of the sensor. The
study shows that although meeting resonance in the para-
metrically excited drive mode is necessary for having high
amplitudes in the sense mode, it is not sufficient and there
exist only few distinct sets of parameter values for which
resonance-based high amplitude is obtained for the gyro-
scope. In this paper, three sets of resonance regions for
the parametrically excited MEMS gyroscope were
obtained. These regions give a dynamic performance
approximately 1000 times larger in amplitude and 10
times faster in reaching the steady state, compared to the
previous reports for such a device. It was shown here that
parametric excitation can provide more accurate readings
for a gyroscope and consequently, results in manufacturing
of much more accurate gyroscopes.

It was also shown that if parametric resonance is imple-
mented for gyroscopes, even a large difference between
the stiffness in the drive and the sense modes due to
imperfections in manufacturing, cannot influence the sen-
sor’s performance significantly. This property is the most
incredible benefit of parametric resonance, because neither
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post-manufacturing tunings nor closed loop control meth-
ods are able to provide resonance in a gyroscope having a
great difference in its modes’ natural frequencies.
x2 

x3 

X1 

X3 

X brf
1 

X brf
2

X brf
3 

Fig. A1. Coordinate systems for deriving the equation of motion.
Appendix A. Deriving the equation of motion

Consider again the structure of the gyroscope illus-
trated in Fig. 1. To derive the governing equations, we con-
sider the coordinate systems shown in Fig. A1 in which
x–y–z coordinate is replaced by x1–x2–x3 system. Note that
Xi is the position vector with respect to the fixed Newto-
nian reference frame, Xbrf

i is the position vector of the ori-
gin of the body reference frame and xi is the coordinate in
the body reference frame. The rotation of the body refer-
ence frame is considered to be Xi. Using Einstein notation
in which a repeating index is equivalent to summation
over that index from 1 to 3, the position, velocity and
acceleration vectors can be described as in

X ¼ Xbrf
i Ei þ xiei ðA1Þ

_X ¼ _Xbrf
i Ei þ _xiei þXjEj � xiei ðA2Þ

€X ¼ €Xbrf
i Ei þ €xiei þ 2XjEj � _xiei þ _XjEj � xiei þXkEk

� ðXjEj � _xieiÞ ðA3Þ

where Ei is the unit vector in Xref coordinate and ei is the
unit vector in x1–x2–x3 system.

It can easily be shown that the relation between the
unity vectors can be described as in Eq. (A4) where Qi’s
are presented in Eq. (A5) and /i’s are defined as in Fig. A2.

Ei ¼ Q 1Q2Q 3ei ðA4Þ

Q 1 ¼
cos /1 � sin /1 0
sin /1 cos /1 0

0 0 1

2
64

3
75;

Q 2 ¼
1 0 0
0 cos /2 � sin /2

0 sin /2 cos /2

2
64

3
75;

Q 3 ¼
cos /3 � sin /3 0
sin /3 cos /3 0

0 0 1

2
64

3
75 ðA5Þ
Fig. A2. Definition of d
Substitution of Eq. (A4) in Eq. (A3) results in
€X¼ €x1þ2X2 _x3�2X3 _x2þ _X2x3� _X3x2�x1ðX2
2þX2

3Þ
h
þx2X1X2þx3X1X3þ €Xbrf

1 ðcos/1 cos/3

�sin/1 cos/2 sin/3Þþ €Xbrf
2 ðsin/1 cos/3

þcos/1 cos/2 sin/3Þþ €Xbrf
3 sin/2 sin/3

i
e1

þ €x2þ2X3 _x1�2X1 _x3þ _X3x1� _X1x3�x2ðX2
1þX2

3Þ
h
þx1X1X2þx3X2X3� €Xbrf

1 ðsin/1 cos/2 cos/3

þcos/1 sin/3Þ� €Xbrf
2 ðsin/1 sin/3�cos/1 cos/2 cos/3Þ

þ €Xbrf
3 sin/2 cos/3

i
e2þ €x3þ2X1 _x2�2X2 _x1þ _X1x2

h
� _X2x1�x3ðX2

1þX2
2Þþx1X1X3þx2X2X3

þ€Xbrf
1 sin/1 sin/2� €Xbrf

2 cos/1 sin/2þ €Xbrf
3 cos/2

i
e3 ðA6Þ

Note that the acceleration is presented in the body ref-
erence frame in order to simplify the force balance in New-
ton’s second law. External forces in the direction of unit
vectors ei are considered as presented in Eq. (A7), where
Fa is the actuation force, Fr is restoring force and Fd is
damping force.
Fi ¼ Fa
i � Fr

i � Fd
i ðA7Þ

Thus, the general form of the equation of motion of the
sensor can be derived as Eq. (A8)
escribing angles.



m€x1 þ Fd
1 þ Fr

1 ¼ Fa
1 �m 2X2 _x3 � 2X3 _x2 þ _X2x3 � _X3x2

h
� x1ðX2

2 þX2
3Þ þ x2X1X2 þ x3X1X3

þ €Xbrf
1 ðcos /1 cos /3 � sin /1 cos /2 sin /3Þ þ €Xbrf

2 ðsin /1 cos /3

þ cos /1 cos /2 sin /3Þ þ €Xbrf
3 sin /2 sin /3

i
m€x2 þ Fd

2 þ Fr
2 ¼ Fa

2 �m 2X3 _x1 � 2X1 _x3 þ _X3x1

h
� _X1x3 � x2ðX2

1 þX2
3Þ þ x1X1X2 þ x3X2X3

�€Xbrf
1 ðsin /1 cos /2 cos /3 þ cos /1 sin /3Þ � €Xbrf

2 ðsin /1 sin /3 � cos /1 cos /2 cos /3Þ þ €Xbrf
3 sin /2 cos /3

i
m€x3 þ Fd

3 þ Fr
3 ¼ Fa

3 �m 2X1 _x2 � 2X2 _x1 þ _X1x2 � _X2x1 � x3ðX2
1 þX2

2Þ þ x1X1X3 þ x2X2X3þ
h

€Xbrf
1 sin /1 sin /2 � €Xbrf

2 cos /1 sin /2 þ €Xbrf
3 cos /2

i

ðA8Þ
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By considering the following assumptions, Eq. (A9) is
obtained.

a. Actuation is applied only in the direction of e1.
b. The frame has a negligible acceleration, i.e. €Xbrf

i ¼ 0.
c. Frame’s rotation rate is constant, thus _Xi ¼ 0.
d. Rotation is only in the direction of e3 i.e. X1 = X2 = 0.
e. Motion in the direction of e3 is restricted by compar-

atively higher stiffness resulting in x3 ¼ _x3 ¼ €x3 ¼ 0.
m€x1 þ Fd
1 þ Fr

1 ¼ Fa
1 þ 2mX3 _x2 þmx1X

2
3

m€x2 þ Fd
2 þ Fr

2 ¼ �2mX3 _x1 þmx2X
2
3

(
ðA9Þ
Also, by considering the following assumptions, Eq. (A10)
can be obtained which is the same as Eq. (1) in the paper.

f. Dissipation is considered to behave as a viscous
damping (linear behavior).

g. Cross-coupling stiffness and damping are neglected,
i.e. Fr

1ðx1; x2Þ ¼ Fr
1ðx1Þ, etc. and also

Fd
1ðx1; x2Þ ¼ Fd

1ðx1Þ, etc.
h. Stiffness is considered to act cubically as

Fr
i ðxiÞ ¼ k1xi þ k3x3

i

m€x1 þ cx1
_x1 þ k1x1 þ k3x3

1 ¼ Fa þ 2mX3 _x2 þmx1X
2
3

m€x2 þ cx2
_x2 þ k1x2 þ k3x3

2 ¼ �2mX3 _x1 þmx2X
2
3

(

ðA10Þ
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