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Abstract—In order to optimally assign a desired prob-
ability distribution to the state of a nonlinear stochastic
system, a convex duality approach is proposed to arrive at
the associated optimality conditions. For a general class
of stochastic systems governed by controlled Itô differen-
tial equations and subject to constraints on the probability
distribution of the state at a fixed terminal time, a mea-
sure theoretic formulation is presented and it is shown
that the original problem is embedded in a convex lin-
ear program on the space of Radon measures and that
the embedding is tight, i.e., the optimal solution of both
the original and the convex relaxation problems are equal.
By exploiting the duality relationship between the space
of continuous functions and that of measures, the asso-
ciated optimality conditions are identified in the form of
Hamilton-Jacobi problems where the optimization objec-
tive, in addition to the value function evaluation at the initial
conditions, includes an extra term which is the integral of
the product of the value function at the terminal time and
the desired probability distribution. Numerical examples
are provided to illustrate the results.

Index Terms—Stochastic optimal control, stochastic
systems, optimal control.

I. INTRODUCTION

THIS letter addresses finite-horizon optimal control prob-
lems for continuous time nonlinear stochastic systems,

where the control objective is to steer the state from an
initial condition to a desired terminal probability distribu-
tion with known statistics. In the literature, problems of this
type has only appeared for special subclasses of systems.
More precisely, the majority of studies assume linearity of
the dynamics and a quadratic form for the cost, as well
as Gaussian forms for the desired distribution. The asso-
ciated results are presented for both infinite time horizon
problems [1]–[4] and finite time horizon problems in both
continuous time and discrete time settings [5]–[13]. The
accommodation of input constraints is considered in [9],
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and convex relaxations for linear systems subject to chance
constraints are studied in [11], [12]. Extensions of the prob-
ability distribution assignment to nonlinear systems has been
presented for feedback-linearizable systems [14], and imple-
mentation through iterative linearization is proposed in [15]. In
past work of the author [16], [17], a perpetual renewal of the
terminal state constraint is proposed for nonlinear stochastic
systems and the Terminally Constrained Stochastic Minimum
Principle (TC-SMP) is established. While the TC-SMP applies
to both linear and nonlinear systems, a major limitation of the
theory is that it can only assigns the Dirac delta probability
distribution to the terminal state and this is achieved at the
expense of using unbounded input values. In this letter, we
take an entirely different approach which permits assigning a
large class of probability distributions to the terminal state.
We employ the notion of occupation measures to formulate
the problem as a linear program over the space of measures
and we arrive at the optimality conditions by using convex
duality relations.

The convex duality method for optimal control problems
was initiated by Vinter and Lewis [18], [19] for determin-
istic control systems and, later, by Fleming and Vermes for
piecewise deterministic [20] and stochastic [21] processes. The
fundamental idea of this approach is the introduction of a
weak formulation that embeds the original (strong) problem
into a convex linear program over the space of Radon mea-
sures. Upon establishing the equivalence of the two problems,
new necessary and sufficient optimality condition are obtained
by invoking the Fenchel-Rockafellar duality theorem. This
approach is particularly useful in characterization of optimal
policies in certain desirable classes of controls by investigat-
ing the extreme points of the set of Hamilton-Jacobi prob-
lems (see, e.g., [22]–[25]). For deterministic control systems,
convex duality based numerical algorithms are established
in [26]–[28] for continuous systems, and in [29]–[31] for
hybrid systems.

The first objective of this letter is the extension of the covari-
ance control problems to nonlinear systems with nonlinear
costs and general desired probability distributions. This, in
particular, requires a change of viewpoint from the study of
sample paths (where the terminal state distribution is a statisti-
cal byproduct of the investigation) to the study of the so-called
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occupation measures in which the description of the terminal
distribution constraint is inherently natural to the representa-
tion. The second and primary objective of the article is to
establish the associated optimality conditions for the general
nonlinear and non-Gaussian case which itself requires invok-
ing convex duality relationships. While the majority of this
part has parallels in the discussion for unconstrained nonlin-
ear stochastic systems in [21], our optimality conditions for
nonlinear stochastic systems with distribution constraints are
novel and, to the best of our knowledge, has not appeared
in the literature before. The third objective is to illustrate the
theoretical results by means of numerical examples.

The organization of this letter is as follows. Section II
presents the class of stochastic optimal control problems
subject to distribution constraints on their terminal state.
Section III introduces the notion of occupation measures and
shows that the cost can be strongly represented as a linear
functional over the space of occupation measures. Since the
identification of this space is not straightforward from the
governing equations, Section IV investigates the properties of
occupation measures based upon which a weak formulation of
the problem is presented in Section V as a linear program (LP)
defined on a convex domain in the space of signed measures.
It is shown that the strong problem is tightly embedded in this
weak problem and a set of Hamilton Jacobi (HJ)-type inequal-
ities are established using the duality relationship between the
space of measures and that of continuous functions. Illustrative
examples are provided in Section VI.

II. ORIGINAL PROBLEM

Let (�,F , {Ft}T
0 , P) be a filtered probability space with

{Ft}T
0 an increasing family of sub σ -algebras of F such that

F0 contains all the P-null sets, and FT = F for the fixed
terminal time T < ∞. Consider a nonlinear stochastic systems
governed by the controlled Itô differential equation

dxs = f (s, xs, us)ds + g(s, xs)dws, (1)

where xs ∈ R
n, us ∈ U ⊂ R

m, and ws ∈ R
d are, respectively,

the values of the state, the input, and the realization of a stan-
dard Wiener process at time s ∈ [0, T]. The input value set U
is assumed to be convex and compact and the functions f and
g are considered to be Lipschitz functions over, respectively,
[0, T]×R

n ×U and [0, T] × R
n with linearly bounded growth

rates.
Let [u] := {us : 0 ≤ s ≤ T} denote a nonanticipative,

U-valued, input process such that us ∈ U is progressively
measurable with respect to Fs for all s ∈ [0, T]. We denote
by U the set of all such inputs.

The primary goal of the control problem is to deter-
mine [u] ∈ U such that the probability distribution of the
terminal state takes a desired form pd, i.e., x[u]

T ∼ pd. This,
by definition, signifies that for every Borel set Bx ∈ R

n,

P[u](xT ∈ Bx) =
∫

Bx

pd(dx), (2)

where P[u](·) denotes the probability of an event given the
input [u]. The set of all [u] ∈ U such that (2) is satis-
fied is denoted by U ′. In this letter, we assume that the

system satisfies any controllability requirement so that the
desired probability distribution is attainable. More precisely,
we restrict our attention to problems satisfying the following.

Assumption 1: The set U ′ is non-empty.
For a given initial condition x0 at t = 0, we associated to

each [u] ∈ U ′ a total cost

J(0, x0, [u]) = E
[u]

[∫ T

0
�(xs, us)ds

]
(3)

where � is a continuous function with polynomial growth.
The associated optimal control problem is defined as finding

the value function at the initial time and state

V(0, x0) := inf
[u]

{
E

[∫ T

0
�(xs, us)ds

∣∣∣ [u]

]
s.t. x[u]

T ∼ pd

}
(P)

and, whenever a minimizer exists, an optimal policy [uo]
which attains the minimum value of (P).

III. STRONG FORMULATION

We define the input-state-time occupation measure as

μ[u](Bt, Bx, Bu) := E
[u]

∫
Bt

IBx(xs) · IBu(us) ds, (4)

for arbitrary Borel sets Bt ⊂ [0, T], Bx ⊂ R
n, Bu ⊂ U, where

IB denotes the indicator function of the set B.
We also define the terminal state occupation measure as

κ [u](Bx) := P[u](xT ∈ Bx). (5)

for an arbitrary Borel set Bx ⊂ R
n.

Lemma 1: For every [u] ∈ U , measurable func-
tions � : [0, T) × R

n × U → R with �(s, x, U) :=
{l(s, x, u) : u ∈ U} convex for all s ∈ [0, T], x ∈ R

n,
and for all measurable functions L : Rn → R, it is the case
that

E
[u]

∫ T

0
�(xs, us)ds =

∫
[0,T]×Rn×U

�(x, u) μ[u](dt, dx, du)

=:
〈〈〈
�, μ[u]〉〉〉, (6)

E
[u][L(xT)] =

∫
Rn

L(x) κ [u](dx) =:
〈〈〈
L, κ [u]〉〉〉. (7)

Proof: The proof follows directly from the definitions (4)
and (5), and the measurability of the functions �, L.

We denote by MS the set of occupations measures cor-
responding to all [u] ∈ U , i.e., MS := {μ[u] : [u] ∈
U}.

Thus, the original problem (P) is equivalently represented
in terms of occupation measures in the form of

V(0, x0) = inf
μ[u]∈MS

{〈〈〈
�, μ[u]〉〉〉 s.t. κ [u] = pd

}
. (SP)

We refer to the reformulation (SP) as the strong problem
due to the direct correspondence between (P) and (SP). We
note that for every measurable function �, the problem (SP) is
an optimization problem with a linear objective defined over
the space MS. However, the identification of this space is
not straightforward as it is associated with implementing all
admissible inputs [u] ∈ U on the stochastic differential equa-
tion (1). To address this issue, we present in Section V a
problem defined directly over the space of measures which
tightly embeds our original problem.
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IV. FROM STRONG TO WEAK FORMULATION

The goal of this section is to invoke the properties of occu-
pation measures in Section III to provide a formulation of
the strong problem (SP) as a linear program over a convex
subspace in the space of measures presented in Section V.

A. Positivity of Occupation Measures

The first observation about the occupation measures (4)
is that they are non-negative measures. In other words, for
every [u] ∈ U it is the case that μ[u](Bt, Bx, Bu) ≥ 0, for all
Bt ⊂ [0, T], Bx ⊂ R

n, Bu ⊂ U.

B. Finiteness of Measure Norms

The norm of occupation measures defined over a finite time
horizon is bounded by

∥∥μ[u]
∥∥ =

∫
[0,T]×Rn×U

μ[u](ds, dx, du)

=
(4)

∫ T

0

∫
Rn

∫
U
Idx(xs) · Idu(us) ds = T, (8)

C. Governing Equations

Before presenting the equations governing the evolution of
occupation measures, let us first present the following.

Lemma 2: For every twice continuously differentiable func-
tion v ∈ C2([0, T] × R

n)

〈〈〈
v, κ [u]〉〉〉 − 〈〈〈Av, μ[u]〉〉〉 = v(0, x0), (9)

where A is the infinitesimal operator of the Markov process (1)
and is given as

Auv(t, x) = ∂v(t, x)

∂t
+

[
∂v(t, x)

∂x

]�
f (t, x, u)

+ 1

2
tr

(
g(t, x)�g(t, x)

∂2v(t, x)

∂x2

)
. (10)

Proof: It follows from Dynkin’s formula that (see, e.g.,
[21, eq. (8.3)])

E
[u][v(T, xT)] = v(0, x0) + E

[u]
[∫ T

0
Ausv(s, xs) ds

]
(11)

for all [u] ∈ U . Invoking Lemma 1, we can rewrite the left
and right hand side terms in (11) as

E
[u][v(T, xT)] =

∫
Rn

v(T, x) κ [u](dx) = 〈〈〈
v, κ [u]〉〉〉 (12)

E
[u]

[∫ T

0
Ausv(s, xs) ds

]

=
∫

[0,T]×Rn×U
Auv(t, x) μ[u](dt, dx, du) = 〈〈〈Av, μ[u]〉〉〉. (13)

Substitution of (12) and (13) into (11) yields (9).
Using Lemma 2, we can write the equation governing the

evolution of occupation measures as follows.
Theorem 1: For every [u] ∈ U , occupation measures corre-

sponding to trajectories of the system (1) satisfy

κ [u] − A∗μ[u] = δ̄(0,x0), (14)

where δ̄(0,x0) is the Dirac measure, and A∗ is the adjoint of (10)
defined as the operator satisfying〈〈〈Av, μ

〉〉〉 = 〈〈〈
v,A∗μ

〉〉〉
(15)

for every Borel measure μ, and any twice continuously
differentiable function v ∈ C2([0, T) × R

n).
Proof: By invoking Lemma 2 and the definition of the Dirac

measure, (9) is written as〈〈〈
v, κ [u]〉〉〉 − 〈〈〈Av, μ[u]〉〉〉 = 〈〈〈

v, δ̄(0,x0)

〉〉〉
. (16)

Since all μ[u] ∈ MS are Borel measures, we can invoke (15)
for every μ[u] and obtain〈〈〈

v, κ [u]〉〉〉 − 〈〈〈
v,A∗μ[u]〉〉〉 = 〈〈〈

v, δ̄(0,x0)

〉〉〉
, (17)

which, by the additive property of inner products, becomes〈〈〈
v, κ [u] − A∗μ[u] − δ̄(0,x0)

〉〉〉 = 0. (18)

Since (18) must hold for all v ∈ C2([0, T) × R
n), the

relation (14) is obtained.
In particular, the substitution of κ [u] = pd into (14) yields

A∗μ[u] = pd − δ̄(0,x0). (19)

V. WEAK FORMULATION

Since the identification of MS is challenging due to its
dependence on U , in this section, we introduce a weaker
problem define over a larger domain MW ⊃ MS that is easily
identifiable as a convex domain in the space of measures.

A. Weak Problem

Let M±(S) denote the set of all signed Borel measures
on S and M+(S) the non-negative cone of M±(S). For
every μ ∈ M±([0, T] × R

n × U) we define the norm
‖μ‖ := ∫

[0,T]×Rn×U dμ+ + ∫
[0,T]×Rn×U dμ−.

We begin by defining the weak problem and the correspond-
ing weak value function as

W(0, x0) := inf
μ∈MW

〈〈〈
�, μ

〉〉〉
, (20)

where MW := MPB ∩ MA, with

MPB := {
μ ∈ M+

(
[0, T] × R

n × U
)

: ‖μ‖ ≤ T
}
, (21)

MA := {
μ ∈ M±

(
[0, T] × R

n × U
)

: A∗μ = pd − δ̄(0,x0)

}
. (22)

The above problem is a linear program on the space of
signed measures. The set MPB is a convex subset of M± and
the constraint MA is linear and therefore restricts the problem
into a linear subspace.

Over the compact Hausdorff space [0, T] × R
n × U, the

Banach space of continuous functions C([0, T] × R
n × U)

equipped with the sup-norm has a topological dual C∗([0, T]×
R

n ×U) that is isometrically isomorphic to M±([0, T]×R
n ×

U) equipped with the norm ‖μ‖ := ∫
dμ+ + ∫

dμ−. The
norm topology of C and the weak dual topology of M± are
compatible with the pairing defined by the bilinear form

〈〈〈
c, μ

〉〉〉
for all c ∈ C([0, T] × R

n × U), and μ ∈ M±([0, T]×R
n×U).

Endowing the space of continuous functions with the topol-
ogy of the sup-norm and endowing the space of signed
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measures, M±, with a weak dual topology, it follows that
MPB ∩ MA is w*-compact and hence, the infimum in (20)
is achieved and is equal to the minimum. Thus, we define the
weak problem as

W(0, x0) := min
μ∈M±

{〈〈〈
�, μ

〉〉〉
, s.t. μ ∈ MPB ∩ MA

}
. (WP)

B. Fenchel Normal Form

Using the notion of weak value function, we reformu-
late the convexly constrained linear program as an uncon-
strained convex problem by introducing the functionals h1 and
h2:M±([0, T] × R

n × U) → R defined by

h1(μ) :=
{〈〈〈

�, μ
〉〉〉
, if μ ∈ MPB,

+∞, otherwise.
(23)

h2(μ) :=
{

0, if μ ∈ MA,

−∞, otherwise.
(24)

Both h1 and −h2 are convex and lower semi-continuous [21]
and, hence,

W(0, x0) = min
μ∈M±([0,T]×Rn×U)

{h1(μ) − h2(μ)}. (25)

C. Legendre-Fenchel Transform

The real-valued functional h1 is convex and its convex
conjugate (Legendre-Fenchel transform) is defined by

h∗
1(c) := sup

μ∈M±([0,T]×Rn×U)

{〈〈〈
c, μ

〉〉〉 − h1(μ)
}
. (26)

Lemma 3:

h∗
1(c) = T · ‖(c − �)+‖, (27)

where (f )+ denotes the positive part of the function f , i.e.,
f +(x) = max{0, f (x)}.

Proof: The proof is a modification of [21, Lemma 4.1] and
is removed due to space limitations.

For the concave functional h2 the Legendre-Fenchel trans-
form is defined as

h∗
2(c) := inf

μ∈M±([0,T]×Rn×U)

{〈〈〈
c, μ

〉〉〉 − h2(μ)
}
. (28)

Lemma 4:

h∗
2(c) =

{
limi→∞

(
vi(0, x0) − 〈〈〈

vi, pd
〉〉〉)

, if c = − limi→∞ Avi,

−∞, otherwise.
(29)

Proof: The proof is a modification of [21, Lemma 4.2] and
is removed due to space limitations.

D. The Hamilton-Jacobi Problem

Theorem 2:

W(0, x0) = sup
v∈C2([0,T]×Rn)

{
v(0, x0) −

∫
Rn

v(T, x)pd(dx),

s.t. Av + � ≥ 0
}
. (30)

Proof: Applying the Rockafellar duality theorem [21] to
C∗([0, T] × R

n × U) = M±([0, T] × R
n × U), we obtain

min
μ∈M±([0,T]×Rn×U)

{h1(μ) − h2(μ)}

= sup
c∈C([0,T]×Rn×U)

{
h∗

2(c) − h∗
1(c)

}
(31)

whenever the set {c : h∗
2(c) > −∞} contains a continuity

point of h∗
1(c) that is finite. Since h∗

1 is continuous and finite
on whole C([0, T] × R

n × U) and h∗
2 is not identically −∞

we deduce that (31) holds. The substitution of (31) into (25)
yields

W(0, x0) = sup
c∈C([0,T]×Rn×U)

{
h∗

2(c) − h∗
1(c)

}

(27)=
(29)

sup
c∈C

{
lim

i→∞
(
vi(0, x0) − 〈〈〈

vi, pd
〉〉〉) − T‖(c − �)+‖

s.t. c = − lim
i→∞Avi

}
. (32)

Using the fact that {Av : v ∈ C2([0, T] × R
n)} is dense in

{c ∈ C([0, T] × R
n × U) : h∗

2(c) > −∞}, we obtain

W(0, x0) = sup
v∈C2

{(
v(0, x0) − 〈〈〈

v, pd
〉〉〉) − T‖(c − �)+‖

s.t. c = −Av
}
. (33)

To conclude the proof it suffices to show that for every
v ∈ C2([0, T] × R

n) there exists a ṽ ∈ C2([0, T] × R
n)

such that Aṽ + � ≥ 0 and ṽ(0, x0) ≥ v(0, x0). Defining
ṽ := v − T‖(Av + �)

−‖, it follows that

Aṽ + � ≡ Av + � + ‖(Av + �)−‖ ≥ Av + �

+ sup
(s,x,u)∈[0,T]×X×U

|(Auv(s, x) + �(x, u))−| ≥ 0. (34)

E. Equivalence of the Weak and Strong Problems

It follows from the definitions (WP) and (SP) of the weak
and strong value functions that

W(0, x0) = min
μ∈MW

〈〈〈
�, μ

〉〉〉 ≤ V(0, x0) = inf
μ[u]∈MS

{〈〈〈
�, μ[u]〉〉〉}. (35)

since MS ⊂ MW := MPB ∩ MA. In order to show the
equivalence of the weak and the strong problems, we need to
show that strict inequality cannot hold and hence, the weak
and the strong value functions coincide.

Theorem 3: The weak and the strong value functions are
equal, i.e.,

W(0, x0) = V(0, x0). (36)

Proof: Let’s assume that this is not true, i.e., there exist
(μ0, κ0) ∈ MPB ∩ MA\MS such that

W0(0, x0) = 〈〈〈
�, μ0

〉〉〉
< V(0, x0) = inf

μ[u]∈MS

{〈〈〈
�, μ[u]〉〉〉}. (37)

This means that the w∗-continuous linear functional
〈〈〈
�, μ

〉〉〉
separates an element μ0 ∈ MPB ∩ MA from the w∗ convex
closure covMS of MS. Then by [21, Th. 3], for every ε >

0 there exists V(ε) whose partial derivatives V(ε)
t , V(ε)

xi , V(ε)
xixj

are defined almost everywhere, are essentially bounded and,
further,

‖V − V(ε)‖ ≤ ε,AuV(ε)(s, x) + �(x, u) ≥ 0, (38)
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for all (s, x, u) ∈ [0, T] × R
n × U. Since V(ε) is not nec-

essarily in C2([0, T] × R
n × U), in order to apply Dynkin’s

formula (9), we also need to invoke [21, Lemma 5.1] that for
every δ > 0 there exists V(ε,δ) ∈ C2([0, T] × R

n × U) such
that

‖V(ε,δ) − V(ε)‖ < δ, ‖AV(ε,δ)‖ ≤ ‖AV(ε)‖ + δ, (39)

AV(ε,δ) + � ≥ −δ, on [δ, T − δ] × R
n × U. (40)

Then by (9),

V(ε,δ)(0, x0) − 〈〈〈
V(ε,δ)

T , pd
〉〉〉 = −〈〈〈AV(ε,δ), μ0

〉〉〉

≤
∫

[δ,T−δ)×Rn×U
� dμ0 + δ

∫
[δ,T−δ)×Rn×U

dμ0

+ ‖AV(ε,δ)‖
∫

{[0,δ)∪[T−δ,T)}×Rn×U
dμ0 (41)

and hence,

V(ε,δ)(0, x0)−
〈〈〈
V(ε,δ)

T , pd
〉〉〉 ≤ 〈〈〈

�, μ0
〉〉〉+2 · δ · T

(
1+‖AV(ε,δ)‖

)
(42)

Employing ‖V − V(ε,δ)‖ < ε + δ from (38) and (39), and
choosing first ε then δ sufficiently small, we arrive at

V(0, x0) − 〈〈〈
V(ε,δ)

T , pd
〉〉〉 ≤ 〈〈〈

�, μ0
〉〉〉

(43)

that is in contradiction with the hypothesis (37). Therefore,
the equivalence (36) holds true.

Theorem 4 (Main Result): For every x0 ∈ R
n and given

a desired terminal distribution pd, the optimal cost (P) is
obtained as

V(0, x0) = sup
v∈C2([0,T]×Rn)

{
v(0, x0) −

∫
Rn

v(T, x)pd(dx),

s.t.
∂v(t, x)

∂t
+

[
∂v(t, x)

∂x

]�
f (t, x, u)

+ 1

2
tr

(
g(t, x)�g(t, x)

∂2v(t, x)

∂x2

)
+ �(t, x, u) ≥ 0,

for all (t, x, u) ∈ [0, T] × R
n × U

}
. (44)

Proof: The result is obtained by substituting (36) from
Theorem 3 into (30) from Theorem 2.

VI. NUMERICAL ILLUSTRATION

Consider the scalar system dxs = (xs+us)ds+dws, with the
total cost J(t0, x0, [u]) = E

∫ T
0

1
2 u2

s ds and the desired terminal
distribution pd = 1

2N (μd
1, σ

d
1 ) + 1

2N (μd
2, σ

d
2 ). These prob-

lems, despite their LQ form of the dynamics and cost, cannot
be solved by the conventional covariance control method-
ologies [1]–[13]. In contrast, the results of Theorem 4 can
be implemented in the following way to identify the value
function and the corresponding optimal policy.

Consider the family of functions {vγ } where for each
γ = (ηγ , ργ , hγ

1 , μ
γ

1 , hγ

2 , μ
γ

2 ), the function is expressed as

vγ (t, x) = −1

ηγ

ln

(
e
−ηγ ργ

(
1
2 π1(t) x2+β1(t) x+α1(t)

)

+ e
−ηγ (1−ργ )

(
1
2 π2(t) x2+β2(t) x+α2(t)

))
(45)

Fig. 1. The identification of parameters (a), the associated limiting
function (b), sample paths (c), and the corresponding distribution (d)
for x0 = 0, T = 2 and pd = 1

2N (3, 1)+ 1
2N (−3, 1) employing (44) and

the class of functions {vγ } defined by (45).

where πi, βi, αi, i = 1, 2, satisfy the Riccati equations
π̇i = π2

i − 2πi, πi(T) = hγ
i ; β̇i = −(1 − πi)βi, βi(T) =

−hγ
i μ

γ
i ; α̇i = 1

2β2
i − 1

2πi, αi(T) = 1
2 hγ

i (μ
γ
i )2. It can be

Authorized licensed use limited to: UNIV OF ALABAMA-TUSCALOOSA. Downloaded on June 24,2022 at 05:05:27 UTC from IEEE Xplore.  Restrictions apply. 



PAKNIYAT: CONVEX DUALITY APPROACH FOR ASSIGNING PROBABILITY DISTRIBUTIONS TO STATE 3085

verified (see, e.g., [32]) that (45) satisfies the HJ-inequality
for all (t, x, u) ∈ [0, T] × R × R.

Since the primary purpose of the example is to illustrate
the characterization of the value function by (44), we restrict
attention to the symmetric case where μd

1 = −μd
2 = μd, σ d

1 =
σ d

2 , and x0 = (μ
γ

1 +μ
γ

2 )/2 = 0, thus ργ = 1/2, and μ
γ

1 = μd,
and μ

γ

2 = −μd. In particular, we consider the case with the
desired distribution pd = 1

2N (3, 1) + 1
2N (−3, 1) at T = 2,

and hence we restrict attention to the sequence of functions
parameterized by γ = (ηγ , 1

2 , hγ , 3, hγ ,−3) ≡ (ηγ , hγ ). The
corresponding values of vγ (0, x0)−∫

Rn vγ (T, x) are displayed
over the region (ηγ , hγ ) ∈ [1, 103] × [0, 4] in Figure 1.

As observed in Figure 1a, for the family (45) of
HJ-subsolutions, the supremum in not attained over the
bounded domain and, while hγ ∗ = 0.97, the supri-
mum requires ηγ → ∞. Indeed, the value function in this
case is nonsmooth and is required to be identified from
lim(ηγ ,hγ )→(∞,0.97) vγ (t, x) as displayed in Figure 1b. In order
to illustrate that the desired probability distribution is attained,
the optimal trajectories of 200 sample paths are displayed
in Figure 1c and the empirical distribution of these trajec-
tories obtained from 100‘000 sample paths are displayed in
Figure 1d.
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