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Abstract In order to steer the population distribution of a large number of agents interacting over a
large-scale complex network towards a set of desired probability distributions for each sub-population,
an approximate control scheme is proposed and developed by the use of Graphon Mean Field theory
and Convex Duality Optimal Control. For a general class of multi-agent nonlinear systems interacting
over large networks, the original problem for a finite population over a finite network is reformulated as
an optimal control problem for an infinite population over an infinite network by letting the number of
nodes in the graph and the number of agents within each cluster approach infinity. Subsequently, the
associated control problem for the graphon limit system is reformulated as a linear program over the
space of Radon measures and is solved using the duality relationship between the space of measures and
that of continuous functions. A numerical example of a network with randomly sampled weightings is
presented to illustrate the effectiveness of the graphon control probability assignment methodology.

Keywords Complex networks, convex duality optimal control, covariance control, graphon control,
graphons, infinite dimensional systems, large networks, probability assignment.

1 Introduction
One effective strategy to overcome the computational intractability of large-scale systems

is to pass to an appropriately formulated infinite limit[1]. This approach has a distinguished
history, as can be traced within the conceptual principle underlying the celebrated Boltzmann
equation of statistical mechanics and that of the fundamental Navier-Stokes equation of fluid
mechanics, as well as the Fokker-Planck-Kolmogorov (FPK) equations for the macroscopic flow
of probabilities[1]. These equations have played a crucial role in modeling the behavior of
systems with a large number of interacting particles, allowing for the derivation of macroscopic
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properties from microscopic dynamics with the consideration of the limit as the number of
particles approaches infinity.

Mean field games (MFG) theory, introduced by Huang, et al.[2, 3], and independently by
Lasry and Lions[4–6], represents another significant application of the infinite limit approach
in control theory. By considering the limit as the number of agents approaches infinity, MFG
transforms intractable multi-agent control problems into tractable ones by replacing the large
number of individual interactions between agents with an aggregated mean field effect on a
representative agent; thus significantly simplifying the analysis and the computation of optimal
strategies. The resulting MFG system, typically consisting of a forward Fokker-Planck equation
and a backward Hamilton-Jacobi-Bellman (HJB) equation, provides a powerful tool for studying
large-scale systems in various fields, including economics[7], finance[8], and social sciences[9].

Classical Mean Field Game theory, while powerful, has a significant limitation: It assumes
that every agent is equally influenced by all other agents in the population, whereas in many
real-world scenarios, agents interact with only a subset of the population, and these interac-
tions often have different strengths. This underscores the need for a more sophisticated frame-
work capable of accommodating intricate interaction structures while maintaining analytical
tractability. Traditional graph theory provides a natural way to represent such structured in-
teractions, but it becomes computationally intractable for very large systems. To overcome
this challenge, we turn to the concept of graphons—limit objects that emerge as the number
of nodes in a sequence of graphs approaches infinity[10]. Graphons provide a continuous repre-
sentation of large-scale networks, enabling the application of analytical techniques that would
be prohibitively complex for finite graphs of comparable size.

Graphon mean field games (GMFG)[1, 11–16] provide a powerful framework for analyzing
optimal control and game-theoretic problems in systems where a large population of agents in-
teract through complex network structures. By extending MFG theory to graphon structures,
GMFG enables the analysis of interactions among vast numbers of agents with diverse connec-
tion patterns and heterogeneous interaction strengths, while maintaining analytical tractability.
The GMFG equations are of significant generality, permitting the study of both highly inter-
connected (dense) and weakly connected (sparse) networks of dynamical agents.

However, the existing GMFG framework lacks the capability to impose constraints on the as-
sociated probability distributions, limiting its applicability to scenarios involving desired distri-
butional outcomes from large networks of multi-agent systems. For instance, while the GMFG
framework can model power distribution networks, the management of energy consumption
patterns often requires achieving specific distribution targets, such as controlling the probabil-
ity distribution of consumption at individual nodes during peak demand periods. This paper
addresses this limitation of the GMFG framework by extending it to accommodate terminal
constraints on the probability measures associated with graphon mean field systems, enabling
the steering of population distributions towards desired predefined outcomes. This extension
significantly broadens the GMFG framework’s applicability to real-world scenarios where pre-
cise control over probability distributions is essential, opening up new avenues for modeling
and optimizing complex networked systems.
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The study of terminal probability distributions in networks of nonlinear multi-agent systems
is particularly relevant in the context of emerging technologies and societal challenges. For
instance, in smart grid management, controlling the distribution of energy consumption across
a network can help balance load and prevent blackouts. In traffic control systems, shaping the
probability distribution of vehicles across a road network can optimize traffic flow and reduce
congestion. Additionally, in epidemiology, understanding and controlling the distribution of
infected individuals across a population network is crucial for effective disease management.
These practical applications underscore the importance of developing fundamental methods for
probability distribution control in large-scale networked systems.

The problem of assigning probability distributions to the state of single-agent stochastic
systems has been the subject of multiple control theoretic investigations. Historically, the ma-
jority of the earlier research has focused on linear systems with quadratic costs, where the
resulting probability distributions are Gaussian. Under these assumptions, the dynamics of the
mean state and covariance state become decoupled, yielding to the decomposition of the input
into a part for steering the mean process, and the other part for steering the covariance. For
infinite time horizons, this problem has been extensively studied, with key contributions ad-
dressing assignable covariances and steady-state behaviors[17–20]. For finite time horizons, both
continuous and discrete time methodologies have been developed to assign distributions effec-
tively, as detailed in [21–30]. The integration of input constraints into these models is explored
in [21] and, further, convex relaxations for linear systems subject to probabilistic constraints
are investigated in [29, 30], which guarantee upper bounds on the probability of constraint
violations. Additionally, model predictive control (MPC) approaches, which adaptively update
control strategies based on evolving information, are discussed in [31–34].

The extension of distribution assignment techniques to single-agent nonlinear stochastic
systems has been a focus of recent research. For nonlinear systems, the convenient properties
of linear systems no longer apply: The problem is not separable into mean and covariance
steering components, and the associated probability distributions are generally non-Gaussian,
even when the noise processes are of Gaussian nature (i.e., Brownian noise and Wiener pro-
cesses). Initial work has been conducted on feedback-linearizable systems[35], where the problem
is transformed into a linear control problem within a new transformation of the state space.
More advanced methods include iterative linearization[36] and differential dynamic program-
ming approximations[37]. More recently, the problem has been reformulated in the context of
the nonlinear Schrödinger bridge problem, as explored in [38, 39]. However, these results are
limited to systems where the stochastic dynamics conform to gradient flow forms.

For more general single-agent optimal control problems subject to distribution constraints,
the necessary optimality conditions are established in [40] for systems with: (i) Dynamics
governed by general nonlinear Itô differential equations, (ii) costs in general nonlinear forms, and
(iii) desired probability distributions of any form, not necessarily Gaussian. These conditions are
established through an extension of Convex Duality Optimal Control (CDOC) in the presence
of constraints on the associated probability measures, which identifies the value function as the
supremizing function of an optimization problem over a class of Hamilton-Jacobi (HJ) problems
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where the optimization objective, in addition to the value function evaluation at the initial state,
includes an extra term which is the integral of the product of the value function at the terminal
time and the desired probability distribution.

Convex duality methods for optimal control was originally proposed by Vinter and Lew-
is[41, 42] and later extended by Fleming and Vermes for piecewise deterministic[43] and stochast-
ic[44] processes. The fundamental idea of CDOC is the introduction of a weak formulation that
embeds the original (strong) problem into a convex linear program over the space of Radon
measures. Upon establishing the equivalence of the two problems, new necessary and sufficient
optimality condition are obtained by invoking the Fenchel-Rockafellar duality theorem. This
methodology, which is particularly useful in the characterization of optimal policies in certain
classes of controls by investigating the extreme points of the set of HJ problems[45–48], has been
applied to both continuous[49–51] and hybrid systems[52–54].

This paper builds on recent advancements in single-agent distributional control and covari-
ance steering theory by extending the results to multi-agent stochastic systems with complex
interaction structures of graphon mean field systems. Specifically, this work extends the distri-
butionally constrained convex duality optimal control (DC-CDOC) established in [40, 55] for
assigning probability measures to single agent nonlinear stochastic systems, to the case of a large
network of nonlinear multi-agent systems within the framework of graphon mean field games
theory developed in [1, 11]. By integrating these approaches, this paper formulates a decentral-
ized control strategy for the network that ensures probability distributions across both overall
populations and subpopulations are steered towards predetermined desired distributions. The
established control strategies, which are optimal for the associated infinite population represen-
tation of the system over an infinite network, are ε-optimal for the original system with finite
agents over a finite network where ε → 0 as the number of agents and the number of nodes
approach infinity[1].

The DC-CDOC method proposed in this paper extends the single-agent distributional con-
trol techniques to the multi-agent setting within the graphon mean field framework. This exten-
sion allows for the control of probability distributions in large-scale networked systems, which
was not previously possible with existing graphon mean field game approaches. By reformulat-
ing the problem as a linear program over the space of Radon measures and leveraging convex
duality relationships between measure spaces and continuous functions, the DC-CDOC method
enables the steering of population distributions towards desired predefined outcomes. This ap-
proach overcomes the limitations of previous GMFG frameworks, which lacked the capability to
impose constraints on associated probability distributions. The integration of DC-CDOC with
graphon mean field theory provides a powerful tool for analyzing and controlling large-scale
multi-agent systems with complex network structures, while maintaining analytical tractability
even as the number of agents grows very large.

The structure of the paper is as follows. Section 2 introduces the network system model
and its equivalent representation by the graphon dynamical system. Section 3 provides a
reformulation of the graphon dynamical system and the associated optimal control problem as
the evolution of measures and the associated linear program in the space of signed measures.
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Section 4 presents the optimality conditions for the associated graphon mean field system. The
results are illustrated via a numerical example in Section 5. Concluding remarks and future
research directions are discussed in Section 6.

2 Problem Formulation
2.1 Finite Population over Finite Network

Consider a population of N agents whose interactions are represented by a set of weighted
finite graphs Gk described by its set of nodes (or vertices) Vk = {1, · · · ,Mk} and weights
gkij ∈ [0, 1] for (i, j) ∈ Vk × Vk. Each node l ∈ Vk is occupied by a set of agents which is called
a cluster of the population and is denoted by Cl. Hence, the number of clusters is Mk and the
total number of agents is N =

∑Mk

l=1 |Cl|. For convenience of notation, we denote by C(i) the
cluster to which agent i belongs.

Following the construction of Graphon mean field games (GMFG) in [11], the dynamics of
agent i at time t ∈ [t0, tf ] are represented by

dxi =

(
1

|C(i)|
∑

j∈C(i)

f0(xi, ui, xj) +
1

Mk

Mk∑
l=1

gkC(i)Cl

1

|Cl|
∑
j∈Cl

f(xi, ui, xj)

)
dt+ σ dwi, (1)

where xi ∈ Rnx is the state, ui ∈ Rnu is the input, wi ∈ Rnw is a standard Wiener process, and
where wi and wj are independent processes for all 1 ≤ i ̸= j ≤ N . All initial states are taken
to be independent and have finite second moment.

Each cluster Cl’s empirical distribution of its individual states at time t is denoted by

µl(t, x) =
1

|Cl|
∑
j∈Cl

δxj(t)(x), (2)

where δx denotes the Dirac delta measure at x. Similarly, the total population’s empirical
distribution of all individual states is denoted by

µ(t, x) =
1

N

N∑
i=1

δxi(t)(x) ≡
1

N

Mk∑
l=1

|Cl| · µl(t, x). (3)

Let {pdl }
Mk

l=1 denote a set of desired probability distributions. The objective of the control
problem is to determine the set of input policies JuiK := {ui(s); s ∈ [t0, tf ]}, i ∈ Cl for each
cluster such that µl(tf , x) matches pdl , i.e.,

E
∫
Bx

µl(tf , x) dx =

∫
Bx

pdl (dx), (4)

for all l ∈ {1, · · · ,Mk} and for every Borel set Bx ∈ Rnx , while minimizing the cost

Ji(JuiK, Ju−iK)
=E

[ ∫ tf

t0

(
1

|C(i)|
∑

j∈C(i)

ℓ0(xi, ui, xj) +
1

Mk

Mk∑
l=1

gC(i)Cl

1

|Cl|
∑
j∈Cl

ℓ(xi, ui, xj)

)
dt

]
. (5)
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The team’s cost is the average cost over all agents in the network, i.e.,

JGk
=

1

N

N∑
i=1

Ji(JuiK, Ju−iK). (6)

Hence, the original problem is to determine the set of control strategies {JuiK}Ni=1 while
each agent with the dynamics (1) minimizes the cost (5) under the restriction to the constraint
P
(
xi(tf )

)
=

∫
Bx

pdl (dx).

2.2 Infinite Population over Finite Network
In the asymptotic local population limit, i.e., in the case where |Ck

l | → ∞ for all l ∈
{1, · · · ,Mk}, the dynamics at time t ∈ [t0, tf ] of a generic agent α in the cluster Cp, i.e., α ∈ Cp,
are given by

dxα =

(∫
Rnx

f0(xα, uα, z)µp(t, dz) +
1

Mk

Mk∑
l=1

gCpCl

∫
Rnx

f(xα, uα, z)µl(t, dz)

)
dt+ σ dwα, (7)

where µp is the local mean field generated by agents at vertex p ∈ {1, · · · ,Mk} at time t ∈ [t0, tf ]

defined as
µp(t, x) := lim

|Cp|→∞
µp(t, x) (8)

and the total population’s distribution is denoted by µ(t, x) and is related to local mean fields
by

µ(t, x) =

Mk∑
l=1

lim
|Cl|→∞

|Cl|
N

· µl(t, x). (9)

Similarly, the cost is given as

Jα(JuαK, Ju−αK)
=E

[ ∫ tf

t0

(∫
Rnx

ℓ0(xα, uα, z)µα(t, dz) +
1

Mk

Mk∑
l=1

gCpCl

∫
Rnx

ℓ(xα, uα, z)µl(t, dz)

)
dt

]
. (10)

The objective of the control problem then becomes the determination of the family of input
policies JuαK := {uα(s); s ∈ [t0, tf ]}, α ∈ Cl such that µl(tf , x) matches pdl , i.e.,∫

Bx

µl(tf , x) dx =

∫
Bx

pdl (dx), (11)

for all l ∈ {1, · · · ,Mk}, and for every Borel set Bx ∈ Rnx , while minimizing the cost (10).
It shall be remarked that the transition from a finite population to an infinite population

over a finite network is a crucial step in the approach. While this approximation introduces
some errors, it significantly simplifies the analysis and computation of optimal strategies. As
it is a characteristic of mean field control approaches, the solutions obtained for the infinite
population case are ε-optimal for the original finite population problem, with ε approaching
zero as the number of agents increases.
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2.3 Infinite Population over Infinite Network
Consider a uniform partition {I1, · · · , IMk

} of the interval [0, 1] with I1 = [0, 1
Mk

] and
Ij = ( j−1

Mj
, j
Mk

] for j ∈ {2, · · · ,Mk}. We associate each cluster p ∈ {1, · · · ,Mk} with the
partition Ip. We denote by gkαβ , (α, β) ∈ [0, 1]2, the step function graphon corresponding to the
adjacency matrix of the underlying graph Gk = [gkij ](i,j)∈Vk×Vk

which is defined by

gkνφ :=

Mk∑
i=1

Mk∑
j=1

IIi(ν) · IIj (φ) · gkij , (ν, φ) ∈ [0, 1]2, (12)

where II is the indicator function of the interval I, as illustrated for an example graph with
Mk = 40 in Figure 1-(a), and with Mk = 100 in Figure 1-(b).

We denote by gαβ the graphon limit of the finite graph Gk = [gkij ] as Mk → ∞ in the sense
that

lim
Mk→∞

max
i∈{1,··· ,Mk}

Mk∑
j=1

∣∣∣∣gkCk
i Ck

j

Mk
−
∫
Ij

gIi∗,β
dβ

∣∣∣∣ = 0, (13)

(see [11, (H11)]), where Ii∗ is the midpoint of the subinterval Ii ∈ {I1, · · · , IMk
} of length 1/Mk,

as illustrated in Figure 1-(c) for the limiting behavior of the graphs in Figure 1-(a) and (b).
We also denote by gα,• := [gαβ ]β∈[0,1] the section of g at α.

Figure 1 The graph (left) and the associated pixel representation (right) for a randomized nearest
neighbors connectivity graph

Defining µG := {µβ}β∈[0,1] as the ensemble of local mean fields, we introduce the shorthand
notations
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f̃ [xα, uα, µG, gα,•] :=

∫
Rnx

f0(xα, uα, z)µα(t, dz) +

∫ 1

0

∫
Rnx

f(xα, uα, z) gαβ µβ(t, dz) dβ, (14)

ℓ̃[xα, uα, µG, gα,•] :=

∫
Rnx

ℓ0(xα, uα, z)µα(t, dz) +

∫ 1

0

∫
Rnx

ℓ(xα, uα, z) gαβ µβ(t, dz) dβ. (15)

Hence, the local graphon dynamics is represented as

dxα = f̃ [xα, uα, µG, gα,•]dt+ σ dwα (16)

and the associated cost becomes

Jα(JuαK, Ju−αK) = E
[ ∫ tf

t0

ℓ̃[xα, uα, µG, gα,•]dt

]
. (17)

The objective of the control problem then becomes the determination of the family of input
policies JuαK := {uα(s); s ∈ [t0, tf ]}, α ∈ [0, 1] such that each agent α minimizes the cost (17)
under the restriction to the constraint that µα(tf , x) matches pdα, i.e.,∫

Bx

µα(tf , x) dx = pdα(Bx), (18)

for all α ∈ [0, 1], and for every Borel set Bx ∈ Rnx , while minimizing the cost (17). Thus, the
value function of a representative agent α ∈ [0, 1] is defined as

Vα (t0, ρα(t0, ·)) = infJuαK
{
E
[ ∫ tf

t0

ℓ̃[xα, uα, µG, gα,•]dt

]
s.t.

∫
Bx

µα(tf , x) dx = pdα(Bx)

}
. (19)

It shall be remarked that the approximation of a finite network with an infinite network
(graphon) is another key step in our methodology. This approximation allows us to capture
the limiting behavior of large, complex networks while maintaining analytical tractability. The
graphon representation provides a continuous approximation of discrete graph structures, en-
abling the application of powerful analytical techniques. While this introduces some approxi-
mation error, it allows us to study both dense and sparse network structures within a unified
framework, providing insights that would be difficult to obtain from finite network analysis
alone.

3 Convex Duality Optimal Control Formulation
In this section, we rewrite the case of infinite population over infinite network presented

in Subsection 2.3 as a convex linear program in the space of signed measure and establish a
graphon mean field version of the convex duality relations of the single agent counterpart in [40].

3.1 Strong Problem
We define the input-state-time occupation measure as

m(JuαK,Ju−αK)
α (Bt, Bx, Bu) := E

[ ∫
Bt

IBx

(
xα(s)

)
· IBu

(
uα(s)

)
ds

]
, (20)
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for arbitrary Borel sets Bt ⊂ [t0, tf ], Bx ⊂ Rnx , Bu ⊂ U .
We denote by mG :=

{
m

(JuβK,Ju−βK)
β

}
β∈[0,1]

an ensemble of local occupation measures. We
also use the shorthand notation mβ

G for its element corresponding to β ∈ [0, 1] which, evidently,
mα

G = m
(JuαK,Ju−αK)
α for all α ∈ [0, 1].

It is worth remarking that if f0(s, x, U) := {l(s, x, u) : u ∈ Rnu} and f(s, x, U) := {l(s, x, u) :
u ∈ Rnu} are convex for all s ∈ [t0, tf ], x ∈ Rnx , then under the same regularity assumptions
as in [11], the Hölder continuity of the set of local mean fields µG :=

{
µα}α∈[0,1] also holds for

mG.
In order to accommodate variations in an individual strategy while the remainder of the

population maintain their current strategy (as is required for the study of Nash equilibrium as
in [11] or for agent by agent optimization in teams as in here) we denote by mα∗

G the unaltered
strategy at the location α ∈ [0, 1] (which is identified through the limiting value in mG) whereas
m

(JuαK,Ju−αK)
α is exclusively used for the current strategy of the agent at the location α.
It follows from the definition (20) that for every collection of admissible inputs {JuαK}α∈[0,1],

measurable functions ℓ0, ℓ : [t0, tf )× Rnx × Rnu → R, with ℓ0(s, x,Rnu) := {l(s, x, u) : u ∈ Rnu},
and ℓ(s, x,Rnu) := {l(s, x, u) : u ∈ Rnu} convex for all s ∈ [t0, tf ], x ∈ Rnx , and given an en-
semble of local occupation measures mG, it is the case that

E
[ ∫ tf

t0

(∫
Rnx

ℓ0(xα, uα, z)µα(t, dz) +

∫ 1

0

∫
Rnx

ℓ(xα, uα, z) gαβ µβ(t, dz) dβ

)
dt

]
=

∫
[t0,tf ]×Rnx×Rnu

∫
Rnx×Rnu

ℓ0(x, u, z)m
α∗

G (t, dz, du′)m(JuαK,Ju−αK)
α (dt, dx, du)

+

∫
[t0,tf ]×Rnx×Rnu

∫
[0,1]×Rnx×Rnu

ℓ(x, u, z)mβ
G(t, dz, du

′)dβm(JuαK,Ju−αK)
α (dt, dx, du)

=:
〈〈〈
ℓ̃ , m(JuαK,Ju−αK)

α

〉〉〉
mG

.

(21)

It shall be emphasized that the bilinear operation ⟨ℓ̃ , m(JuαK,Ju−αK)
α ⟩mG

defined in (21) has,
indeed, a linear dependence on m

(JuαK,Ju−αK)
α since mα∗

G in the first set of integrations and
mβ

G in the second set of integrations are determined from mG which remain unchanged while
m

(JuαK,Ju−αK)
α is permitted to change.
We also define the terminal state occupation measure as

κ(JuαK,Ju−αK)
α (Bx) := P(xα(tf ) ∈ Bx), (22)

for an arbitrary Borel set Bx ⊂ Rnx . We denote by Mα|G
S the set of occupations measures

corresponding to all JuαK ∈ U with Ju−αK given as part of mG, i.e.,

Mα|G
S :=

{
m(JuαK,Ju−αK)

α : JuαK ∈ U ,P
(
uβ ∈ Bu

∣∣ t ∈ Bt, xβ ∈ Bx

)
=

∫
Bt

∫
Bx

∫
Bu

mβ
G(dt, dx, du)

}
. (23)
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Thus, the graphon problem with the cost (10) is represented in terms of occupation measures
in the form of the strong problem:

Vα (t0, ρα(t0, ·)) = inf
m

(JuαK,Ju−αK)
α ∈Mα|G

S

{〈〈〈
ℓ̃,m(JuαK,Ju−αK)

α

〉〉〉
s.t. κ(JuαK,Ju−αK) = pdα

}
. (SP)

We refer to the reformulation (SP) as the strong problem due to the direct correspondence
between (19) and (SP). We note that for every measurable function ℓ̃, the problem (SP)
is an optimization problem with a linear objective defined over the space Mα|G

S . However,
the identification of this space is not straightforward as it is associated with implementing all
admissible inputs JuαK ∈ U on the stochastic differential equation (16). To address this issue,
we present in Subsection 3.2 a problem defined directly over the space of measures which tightly
embeds our original problem.

3.2 Weak Problem
It follows from [40, Lemma 2] that for every twice continuously differentiable function v ∈

C2 ([t0, tf ]× Rnx), Dynkin’s formula is expressed as〈〈〈
Aα|µG

v,m(JuαK,Ju−αK)
α

〉〉〉
mG

=
〈〈〈
v, κ(JuαK,Ju−αK)〉〉〉

mG
−
〈〈〈
v, ρ(t0, ·)

〉〉〉
mG

, (24)

where Aα|µG
is the infinitesimal operator of the Markov process (16), written as

Au
α|µG

v(t, x)

=
∂v(t, x)

∂t
+

1

2
tr
(
σTσ

∂2v(t, x)

∂x2

)
+

[
∂v(t, x)

∂x

]T(∫
Rnx

f0(xα, uα, z)µα(t, dz) +

∫ 1

0

∫
Rnx

f(xα, uα, z) gαβ µβ(t, dz) dβ

)
.

(25)

Defining A∗
α|mG

as the adjoint of (25) defined as the operator satisfying〈〈〈
Aα|µG

v,m
〉〉〉
mG

=
〈〈〈
v,A∗

α|mG
m
〉〉〉
mG

, (26)

for every Borel measure m, and any twice continuously differentiable function v ∈ C2([t0, tf )

×Rnx). Hence, for every m
(JuαK,Ju−αK)
α ∈ Mα|G

S , it follows from [40, Theorem 1] that

A∗
α|mG

m(JuαK,Ju−αK)
α = pdα − ρ(t0, ·). (27)

Accordingly, we define the weak problem in the space of signed measures, and the associated
weak value function of agent α as

Wα (t0, ρα(t0, ·)) = inf
m∈M±

{〈〈〈
ℓ̃,m

〉〉〉
, s.t. m ∈ MPB ∩MA

}
, (28)

where

MPB :=
{
m ∈ M+ ([t0, tf ]× Rnx × Rnu) : ∥m∥ ≤ (tf − t0)

}
, (29)

MA :=
{
m ∈ M± ([t0, tf ]× Rnx × Rnu) : A∗

α|mG
m = pdα − ρ(t0, ·)

}
. (30)
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Over the compact Hausdorff space [t0, tf ]×Rnx ×Rnu , the Banach space of continuous func-
tions C ([t0, tf ]× Rnx × Rnu) equipped with the sup-norm has a topological dual C∗([t0, tf ] ×
Rnx × Rnu) that is isometrically isomorphic to M± ([t0, tf ]× Rnx × Rnu) equipped with the
norm ∥m∥ :=

∫
dm+ +

∫
dm−. The norm topology of C and the weak dual topology of M± are

compatible with the pairing defined by the bilinear form ⟨c,m⟩ for all c ∈ C ([t0, tf ]× Rnx × Rnu),
and m ∈ M± ([t0, tf ]× Rnx × Rnu).

Endowing the space of continuous functions with the topology of the sup-norm and endowing
the space of signed measures, M±, with a weak dual topology, based upon the dual relationship
between the space of measures and that of the continuous functions, we will argue below that
it follows that MPB ∩ MA is w*-compact and hence, the infimum in (28) is achieved and is
equal to the minimum. Thus, we directly define the weak problem as

Wα (t0, ρα(t0, ·)) = min
m∈M±

{〈〈〈
ℓ̃,m

〉〉〉
, s.t. m ∈ MPB ∩MA

}
. (WP)

3.3 Fenchel Normal Form
Using the notion of weak value function, we reformulate the convexly constrained linear

program as an unconstrained convex problem by introducing the functionals h1 and h2 :

M± ([t0, tf ]× Rnx × Rnu) → R defined by

h1

(
m
)
:=


〈〈〈
ℓ̃,m

〉〉〉
, if m ∈ MPB ,

+∞, otherwise,
(31)

h2

(
m
)
:=

0, if m ∈ MA,

−∞, otherwise.
(32)

Both h1 and −h2 are convex and lower semi-continuous[44] and, hence,

Wα

(
t0, ρα(t0, ·)

)
= min

m∈M±([t0,tf ]×Rnx×Rnu )

{
h1

(
m
)
− h2

(
m
)}

. (33)

3.4 Legendre-Fenchel Transform
The real-valued functional h1 is convex and its convex conjugate (Legendre-Fenchel trans-

form) is defined by

h∗
1

(
c
)
:= sup

m∈M±([t0,tf ]×Rnx×Rnu )

{〈〈〈
c,m

〉〉〉
− h1

(
m
)}

. (34)

Lemma 3.1
h∗
1

(
c
)
= (tf − t0) · ∥(c− ℓ̃)+∥, (35)

where (f)+ denotes the positive part of the function f , i.e., f+(x) = max{0, f(x)}.

Proof The proof follows a similar structure to the approach in [44, Lemma 4.1], with
necessary adaptations specific to the current framework.
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For the concave functional h2 the Legendre-Fenchel transform is defined as

h∗
2

(
c
)
:= inf

m∈M±([t0,tf ]×Rnx×Rnu )

{〈〈〈
c,m

〉〉〉
− h2

(
m
)}

. (36)

Lemma 3.2

h∗
2

(
c
)
=

 lim
k→∞

(
Vα

(
t0, ρα(t0, ·)

)
−
〈〈〈
vk, pd

〉〉〉)
, if c = − lim

k→∞
Avk,

−∞, otherwise.
(37)

Proof The proof is a modification of [44, Lemma 4.2], with necessary adaptations specific
to the current framework.

3.5 The Hamilton-Jacobi Problem

Theorem 3.3
Wα

(
t0, ρα(t0, ·)

)
= sup

v∈C2([t0,tf ]×Rnx )

{∫
Rnx

vα(t0, x)ρα(t0, dx)−
∫
Rnx

v(tf , x)pd(dx),

s.t. Aα|µG
v + ℓ ≥ 0

}
. (38)

Proof Applying the Rockafellar duality theorem[44] to C∗([t0, tf ]×Rnx ×Rnu) = M±([t0,

tf ]× Rnx × Rnu), we obtain

min
m∈M±([t0,tf ]×Rnx×Rnu )

{
h1(m)− h2(m)

}
= sup

c∈C([t0,tf ]×Rnx×Rnu )

{
h∗
2(c)− h∗

1(c)
}
, (39)

whenever the set {c : h∗
2(c) > −∞} contains a continuity point of h∗

1(c) that is finite. Since
h∗
1 is continuous and finite on whole C ([t0, tf ]× Rnx × Rnu) and h∗

2 is not identically −∞ we
deduce that (39) holds. The substitution of (39) into (33) yields

Wα

(
t0, ρα(t0, ·)

)
= sup

c∈C([t0,tf ]×Rnx×Rnu )

{
h∗
2(c)− h∗

1(c)
}

(35)
=

(37)
sup
c∈C

{
lim
k→∞

(
Vα

(
t0, ρα(t0, ·)

)
−
〈〈〈
vk, pd

〉〉〉)
− (tf − t0)∥(c− ℓ̃)+∥

s.t. c = − lim
k→∞

Aα|µG
vk

}
.

(40)

Using the fact that {Aα|µG
v : v ∈ C2([t0, tf ]×Rnx)} is dense in {c ∈ C([t0, tf ]×Rnx×Rnu) :

h∗
2

(
c
)
> −∞}, we obtain

Wα

(
t0, ρα(t0, ·)

)
= sup

v∈C2

{(〈〈〈
v, ρα(t0, ·)

)〉〉〉
−
〈〈〈
v, pd

〉〉〉)
− (tf − t0)∥(c− ℓ̃)+∥ s.t. c = −Aα|µG

v
}
.

(41)

To conclude the proof it suffices to show that for every v ∈ C2([t0, tf ] × Rnx) there exists
a v̂ ∈ C2([t0, tf ] × Rnx) such that Aα|µG

v̂ + ℓ̃ ≥ 0 and v̂(t0, ρα(t0, ·)) ≥ v(t0, ρα(t0, ·)); this is
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possible by defining v̂ := v − (tf − t0)∥(Aα|µG
v + ℓ̃)

−∥, which yields that

Aα|µG
v̂ + ℓ̃ ≡ Aα|µG

v + ℓ̃+ ∥(Aα|µG
v + ℓ̃)−∥

≥ Aα|µG
v + ℓ̃+ sup

(s,x,u)∈[t0,tf ]×X×U

|(Au
α|µG

v(s, x) + ℓ̃[xα, uα, µG, gα,•])
−|

≥ 0.

(42)

The proof is completed.

3.6 Equivalence of the Weak and Strong Problems
It follows from the definitions (WP) and (SP) of the weak and strong value functions that

Wα

(
t0, ρα(t0, ·)

)
= min

m∈MW

〈〈〈
ℓ̃,m

〉〉〉
≤ V

(
t0, ρα(t0, ·)

)
= inf

mJuK∈MS

{〈〈〈
ℓ̃,mJuK〉〉〉}. (43)

Since MS ⊂ MW := MPB ∩ MA. In order to show the equivalence of the weak and the
strong problems, we need to show that strict inequality cannot hold and hence, the weak and
the strong value functions coincide.

Theorem 3.4 The weak and the strong value functions are equal, i.e.,

Wα

(
t0, ρα(t0, ·)

)
= Vα

(
t0, ρα(t0, ·)

)
. (44)

Proof Let’s assume that this is not true, i.e., there exist (m0, κ0) ∈ MPB ∩ MA \ MS

such that

Wα

(
t0, ρα(t0, ·)

)
=

〈〈〈
ℓ̃,m0

〉〉〉
< Vα

(
t0, ρα(t0, ·)

)
= inf

mJuK∈MS

{〈〈〈
ℓ̃,mJuK〉〉〉}. (45)

This means that the w∗-continuous linear functional
〈〈〈
ℓ̃,m

〉〉〉
separates an element m0 ∈

MPB ∩MA from the w∗ convex closure covMS of MS . Then by [44, Theorem 3], for every
ε > 0, there exists V (ε) whose partial derivatives V (ε)

t , V (ε)
xi , V (ε)

xixj are defined almost everywhere,
are essentially bounded and, further,

∥V − V (ε)∥ ≤ ε, Au
α|µG

V (ε)(s, x) + ℓ̃[xα, uα, µG, gα,•] ≥ 0, (46)

for all (s, x, u) ∈ [t0, tf ]×Rnx ×Rnu . Since V (ε) is not necessarily in C2([t0, tf ]× Rnx × Rnu),
in order to apply Dynkin’s formula (24), we also need to invoke [44, Lemma 5.1] that for every
δ > 0, there exists V (ε,δ) ∈ C2([t0, tf ]× Rnx × Rnu) for which

∥V (ε,δ) − V (ε)∥ < δ, s.t. ∥Aα|µG
V (ε,δ)∥ ≤ ∥Aα|µG

V (ε)∥+ δ, (47)
Aα|µG

V (ε,δ) + ℓ̃ ≥ −δ, on [t0 + δ, tf − δ]× Rnx × Rnu . (48)

Then by (24),

V (ε,δ)
(
t0, ρα(t0, ·)

)
−
〈〈〈
V

(ε,δ)
T , pd

〉〉〉
=−

〈〈〈
Aα|µG

V (ε,δ),m0

〉〉〉
≤
∫
[δ,T−δ)×Rnx×Rnũ

ℓ dm0 + δ

∫
[δ,T−δ)×Rnx×Rnu

dm0

+ ∥Aα|µG
V (ε,δ)∥

∫{
[0,δ)∪[T−δ,T )

}
×Rnx×Rnu

dm0

(49)
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and hence,

V (ε,δ)
(
t0, ρα(t0, ·)

)
−
〈〈〈
V

(ε,δ)
T , pd

〉〉〉
≤

〈〈〈
ℓ̃,m0

〉〉〉
+ 2 · δ · (tf − t0)

(
1 + ∥Aα|µG

V (ε,δ)∥
)
. (50)

Employing ∥V − V (ε,δ)∥ < ε+ δ from (46) and (47), and choosing first ε then δ sufficiently
small, we arrive at

V
(
t0, ρα(t0, ·)

)
−
〈〈〈
V

(ε,δ)
T , pd

〉〉〉
≤

〈〈〈
ℓ̃,m0

〉〉〉
, (51)

that is in contradiction with the hypothesis (45). Therefore, the equivalence (44) holds true.

4 Graphon Mean Field Optimality Conditions
Assuming that all measures µα, α ∈ [0, 1], possess density functions denoted by ρα, we invoke

the ε-Nash equilibrium conditions of [11] for graphon mean field games and employ the results
of the convex duality based formulation for probability assignment established in Section 3,
in order to obtain the following identification of optimal solutions for assigning probability
measures to large scale network of nonlinear stochastic agents.

Theorem 4.1 (Main Result) The optimal solution for the problem of assigning probability
distributions to the infinite population over infinite network of Subsection 2.3 is identified from
the following relations:

Vα(t0, ρα(t0, ·)) = sup
vα∈C2([t0,tf ]×Rnx)

{∫
Rnx

vα(t0, x)ρα(t0, dx)−
∫
Rnx

vα(tf , x)p
d
α(dx),

s.t. ∂vα(t, x)

∂t
+

[
∂vα(t, x)

∂x

]T
f̃ [x, u, µG; gα] +

1

2
tr
(
σTσ

∂2vα(t, x)

∂x2

)
+ ℓ̃(x, u, µG; gα] ≥ 0, for all (t, x, u) ∈ [t0, tf ]× Rnx × Rnu

}
,

(52)

together with

∂ρα(t, x)

∂t
= −∂{f̃ [x, u∗

α(t, x), µG; gα]ρα(t, x)}
∂x

+
1

2

n∑
i=1

n∑
j=1

[σ σT]ij
∂2ρα(t, x)

∂xi∂j
, (53)

with u∗
α(t, x) determined from

u∗
α(t, x) ∈ arg inf

u∈Rnu

{
ℓ̃(x, u, µG; gα] +

[
∂vα(t, x)

∂x

]T
f̃ [x, u, µG; gα]

}
. (54)

Proof The result is obtained from the ε-Nash optimality conditions of [11] for graphon
mean field games with the substitution of (44) from Theorem 3.4 into (38) from Theorem 3.3.
The proof is completed.

5 Numerical Illustration
Consider a population of 2000 agents in Mk = 40 clusters with |Cl| = 50, for all l ∈

{1, · · · ,Mk} whose graph Gk is a realization of a randomized nearest neighbors connectivity
graph as displayed in Figure 1-(a).
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Agents dynamics are represented as

dxi =

([
0 1

2 −3

]
xi +

1

40

40∑
l=1

gkC(i)Cl

[
0 1

2 −3

]
µl(t, x) +

[
0

1

]
us

)
ds+

[
0

1

]
dws, (55)

and their costs are given as

Ji
(JuiK, Ju−iK) := E

[ ∫ tf

t0

1

2
u2
i ds+

1

40

40∑
l=1

gkC(i)Cl

1

2
∥xi − µl(t, x)∥

2

]
. (56)

Due to the linearity of the system and the Gaussian form of the desired distribution, the
graphon mean field optimal solutions of Section 4 can be solved by the procedure proposed
in [55, Subsection 9.5.1] combined with LQG graphon mean field solutions of [56] as follows.

Step 1 Set the iteration counter to k = 0, and initiate the algorithm with an arbitrary terminal
cost function Lk

α(x) =
1
2x

THk
αx+ (skα)

Tx+ δkα.

Step 2 Solve the Riccati equations of [56] for the graphon mean field problem with vkα(tf , x) =

Lk
α(x).

Step 3 Evaluate
∫
Rnx

vkα(t0, x)ρ(t0, dx)−
∫
Rnx

vkα(tf , x)pd(dx) from the solution to the Riccati
equations.

Step 4 Update µk
G to the corresponding ensemble of mean fields.

Step 5 Update Lk+1(x) using an ascent direction for the cost∫
Rnx

vkα(t0, x)ρ(t0, dx)−
∫
Rnx

vkα(tf , x)pd(dx).

With the consideration of the time horizon as [t0, tf ] = [0, 1] and with the initial and desired
probability distributions of all clusters given, respectively, as ρl(t0, ·) ∼ N

([−1
−1

]
,
[
1/4 0
0 1/2

])
,

and pdl ∼ N
([

3
−2

]
,
[
1/10 0
0 1/10

])
, for l ∈ {1, · · · ,Mk}, a sample realization of the trajectories

of the agents as well as their input process are displayed in Figure 2. The evolution of the
empirical distribution of the population is displayed in increments of 0.1 seconds in Figure 3.
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Figure 2 Sample paths for the evolution of the states (top) and their components (the two middle)
as well as the corresponding input processes

t

t

t

t

t

t

Figure 3 The evolution of the empirical distribution of the population displayed in increments of 0.1
seconds

6 Concluding Remarks
This article introduces an approach to approximately control the probability distributions

associated with networks of nonlinear stochastic systems by leveraging the inherent limit de-
scribed by graphon mean field systems. The key advantage of this approach, compared to
seeking exact optimality through consideration of all agent interactions, is its reduced compu-
tational demand, requiring only the study of a parameterized family of representative agents.

The proposed approach extends the graphon mean field games framework by incorporating
terminal constraints on the associated probability measures, making it possible to steer popu-
lation distributions to desired values, hence broadening the applicability of GMFG to scenarios
where specific distributional outcomes are essential.

It shall be remarked that due to the coupling of the value function determination with
the identification of the associated measures, the associated numerical schemes often require
iterations over the two segments of the solution methodology.

It is important to note that our approach to the graphon mean field distribution control
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problem is framed within a team setting, with the satisfaction of certain probability distributions
is considered a collective goal. This choice was made because the act of steering population dis-
tributions towards desired outcomes inherently requires coordination among agents. However,
we acknowledge that this formulation yields local ε-optimality, similar to the person-by-person
optimal (PBPO) solutions typically found in mean field teams (MFT) and Graphon mean field
teams (GMFT) literature. The global optimality of PBPO solutions in general non-linear,
non-Gaussian setups remains an open question, except for some simple instances of linear-
quadratic models. Investigating whether the current results can be extended or adapted to a
game-theoretic framework, where agents may have conflicting objectives, could provide valuable
insights into the broader applicability of graphon mean field distribution control techniques.

The studied example in this article demonstrates the ability of the proposed method to
steer probability distributions to desired values for a network of linear systems interacting
over a graph with a known limiting graphon. However, identifying the graphon associated
with a given graph remains challenging. A plausible empirical approach involves fitting two-
dimensional Fourier series to the step function representation of the adjacency matrix. Such
parametric modeling could resemble techniques used in statistics and system identification.
Additionally, due to the compactness of graphon operators, representations or approximations
through simple spectral decomposition are possible[15].

Future research directions include the development of computational algorithms for numer-
ical solutions of graphon mean field distribution control problems in general nonlinear cases, as
well as the accommodation of hybrid systems features, particularly controlled and autonomous
switchings with exact equality and almost surely equality constraints as switching manifolds as
those expressed in [57].

In summary, this work advances theoretical foundations in network control while paving the
way for practical applications across diverse fields. By addressing the outlined challenges, future
research can further develop graphon mean field distribution control as a tool for managing
complex, large-scale networked systems.
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