
Chapter 9
Theoretical Guarantees for Satisfaction
of Terminal State Constraints
for Nonlinear Stochastic Systems
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Abstract In several engineering applications, it is desired to bring a system from an
initial configuration to a specific terminal configuration. A motivational example is
the vertical landing of reusable rockets which are required to come to full stop at an
exact location on the landing platform in an upright configuration with all linear and
angular velocities coming to zero. While in a deterministic setting, one can study
these problems and provide theoretical guarantees for the satisfaction of the terminal
state requirements, e.g., by employing the PontryaginMinimum Principle (PMP), no
such guarantees can be provided for exact satisfaction of terminal state constraints
in a stochastic setting and, inevitably, one needs to seek alternative expressions of
the desired requirements and establish guarantees for those alternatives. This article
presents two novel approaches, each with an alternative expression of the terminal
state requirement, and each providing theoretical guarantees for optimality and the
satisfactionof the associated terminal state constraints. Thefirst approach is to impose
a constraint on the conditional expectations of the terminal state at all future times
in which case the associated optimality conditions are expressed in the form of
the Terminally Constrained Stochastic Minimum Principle (TC-SMP). The second
approach is to impose a terminal state constraint as the matching of the probability
distribution of the terminal state with a desired probability distribution in which case
the associated optimality conditions are expressed using Hamilton-Jacobi (HJ) type
equations. Numerical examples are provided to illustrate the results.
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9.1 Introduction

In several missions for aerial and underwater vehicles, the system’s state is required
to be pinpoint delivered to a desired destination state. A motivational example is the
landing of a reusable rocket, e.g., the booster rocket of SpaceX Falcon 9, which is
required to come to full stop conditions at an exact location on the landing platform
in an upright configuration with all linear and angular velocities coming to zero. In
the absence of dynamic uncertainty, one can formulate the problem as a deterministic
optimal control problem with a fixed terminal state and invoke powerful theoretical
results such as the Pontryagin Minimum Principle (PMP) to obtain the optimal input
signal together with the associated optimal trajectory. It is worth remarking that
the celebrated Hamilton Jacobi Bellman (HJB) equation is not applicable for this
problem since the terminal (boundary) condition for the HJB equation is not well
defined (i.e., it turns into a singular function).

In the presence of a stochastic diffusion, these state steering problems are more
challenging and have been the subject of a limited number of studies. More precisely,
the majority of studies assume linearity of the dynamics and quadratic forms for the
cost, so that the associated probabilities take the formofGaussian distributions. In this
case, and in the absence of any additional state constraints, the dynamics of the mean
state process and the covariance state process can be shown to be decoupled. Within
an infinite time horizon setting, the problem has been formulated as the association of
a steady-state distribution with its mean being at the desired terminal location, and a
comprehensive study over the assignable covariances for the infinite horizon problem
is presented in [16, 21, 52, 53]. For linear stochastic systems over finite timehorizons,
a similar philosophy is taken in both continuous time and discrete time settings, and
the associated distribution assignment methodologies are studied by [1–3, 9–11, 15,
17, 31, 32]. The accommodation of input constraints is considered in [2], and convex
relaxations for linear systems subject to chance constraints, which are probabilistic
constraints that impose a maximum probability of constraint violation, are studied
in [31, 32]. Within the same class of linear quadratic systems, the accommodation
of information obtained as the time progresses is presented in the form of a model
predictive control (MPC) based approach in [25, 28, 30, 45].

Extensions of the probability distribution assignment to nonlinear systems has
been presented for feedback-linearizable systems [6], and implementation through
iterative linearization is proposed in [43] and via differential dynamic programming
approximations [54]. More recently, new results have emerged via reformulations
of the probability assignment problem as nonlinear Schrödinger bridge problem [7,
29]. However, a key limitation of the current nonlinear Schrödinger bridge results is
that the Itô differential equation governing the dynamics of the nonlinear stochastic
systems must take the special form of a gradient flow. In contrast, for stochastic
systems whose dynamics are governed by a general class of nonlinear Itô differential
equation, whose costs take general nonlinear forms, and whose desired probability
distributions are permitted to take general (not necessarily Gaussian) distributions,
the necessary optimality conditions are established in [35] in the form of Hamilton-
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Jacobi problems where the optimization objective, in addition to the value function
evaluation at the initial conditions, includes an extra term which is the integral of
the product of the value function at the terminal time and the desired probability
distribution. The methodology used in [35] is based upon the accommodation of
terminal distribution constraints on the convex duality method for optimal control
problems which was initiated by Vinter and Lewis [50, 51] for deterministic control
systems and, later, by Fleming and Vermes for piecewise deterministic [47] and
stochastic [14] processes. The fundamental idea of this approach is the introduction
of a weak formulation that embeds the original (strong) problem into a convex linear
program over the space of Radon measures. Upon establishing the equivalence of
the two problems, new necessary and sufficient optimality condition are obtained
by invoking the Fenchel-Rockafellar duality theorem. This approach is particularly
useful in characterization of optimal policies in certain desirable classes of controls
by investigating the extreme points of the set of Hamilton-Jacobi problems (see e.g.
[5, 13, 22, 57]). For deterministic control systems, convex duality based numerical
algorithms are established in [12, 23, 40] for continuous systems, and in [27, 46,
56] for hybrid systems.

A fundamental limit of methodologies based on the assignment of probability
distributions is that the studied probabilities are conditioned on the filtration at the
initial time. In contrast, as proposed in [38, 39] the employment of the Stochas-
tic Minimum Principle (SMP) yields a natural accommodation of filtration-adapted
updates because the same adaptation requirement must be provided for the adjoint
process. In other words, the optimal input expressed in terms of the adjoint process
is adapted to the current time filtration, since the solution of the backward stochastic
differential equation (BSDE) for the adjoint process must remain adapted to the same
forward filtration. This important characteristic provides an opportunity to impose
terminal state constraints at all times, as apposed to the current literature where
constraints are imposed on probability distributions as viewed at the initial time. In
order to solve the associated problem, we invoke the Stochastic Maximum Principle
(SMP) presented in [41] and, in particular, the version with terminal state constraints
[41, Theorem 5], henceforth called the Terminally Constrained Stochastic Minimum
Principle (TC-SMP). While, in general, obtaining numerical solutions to the BSDEs
of the adjoint process are computationally expensive, for a class of linear stochastic
systems with quadratic costs, we derive analytical solutions to the adjoint equation
in terms of the system’s state transition matrix, its controllability Gramian and the
solution of a differential matrix Riccati equation. Moreover, the accommodation of
various information structures on the TC-SMP is studied in [38] and, further, in this
article.

The objective of this article is the presentation of a general framework within
which theoretical guarantees are presented for the satisfaction of a large class of
terminal state constraints for nonlinear stochastic systems, aw well as the illustration
of the two key methodologies of the convex duality based HJ inequalities and the
TC-SMP with analytic examples. The structure of the article is as follows.

Section9.2 discusses the characterization of optimal solutions to the determinis-
tic problem of steering the state towards a desired value, and Sect. 9.3 elaborates the
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discussion to the case with dynamic uncertainties and discusses how one can impose
constraint on the state of stochastic systemswithout violating causality requirements.
Section9.4 presents the problem of constraining the family of conditional expecta-
tions of the terminal state and presents the Terminally Constrained Stochastic Mini-
mum Principle (TC-SMP), its associated numerical algorithm and its specialization
to linear stochastic systemswith quadratic costs. Three examples are presented in this
section to further illustrate the results. Section9.5 presents the problem of constrain-
ing the probability distribution of the terminal state and establishes the associated
optimality conditions, identifying the corresponding value function as the optimal
solution to a family of Hamilton-Jacobi problems where the optimization objective,
in addition to the value function evaluation at the initial conditions, includes an
extra term which is the integral of the product of the value function at the terminal
time and the desired probability distribution. A numerical algorithm based upon this
methodology is presented and the results are illustrated via two numerical examples.
Concluding remarks are presented in Sect. 9.6.

9.2 Deterministic Case Revisited

Let us first recall the fixed end point optimal control problem for the deterministic
case, i.e., in the absence of dynamic uncertainties. For the nonlinear control system
with the dynamics

ẋt = f (xt , ut , t) (9.1)

subject to a given initial state xt0 = x0, and given a fixed finite time horizon [t0, t f ],
we would like to find an input signal input signal [u] :=

{
us : t0 ≤ s ≤ t f

}
which

brings the state to a desired value xt f = x f ∈ Rn . Furthermore, it is often the case
that among all such inputs, one would like to find an optimal input which minimizes
the cost

J (t0, x0, [u]; x f ) =
t f∫

t0

ℓ(xs, us, s)ds (9.2)

For these problems, one can identify optimal inputs from the necessary optimal-
ity conditions of the Minimum Principle [42] which states that for the optimal input
process [u∗] ≡

{
u∗
s : t0 ≤ s ≤ t f

}
and along the corresponding optimal trajectory

[x∗] =
{
x∗
t : t0 ≤ t ≤ t f , where x∗

t = x0 +
∫ t
t0
f (x∗

s , u
∗
s , s)ds

}
there exist a constant

γ ∈ {0, 1} and an adjoint process [λ∗] =
{
λ∗
s : t0 ≤ s ≤ t f

}
such that the Hamilto-

nian defined by

H(x, u, λ, γ , t) := γ ℓ(x, u, t)+ λ⊤ f (x, u, t) (9.3)
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is minimized with respect to u, i.e.,

H(x∗
t , u

∗
t , λ

∗
t , γ , t) ≤ H(x∗

t , u, λ
∗
t , γ , t), for all u ∈ U ⊂ Rm (9.4)

where

ẋ∗
t = ∂H

∂λ

∣∣∣∣
(x∗

t ,u∗
t ,λ

∗
t ,γ ,t)

≡ f (x∗
t , u

∗
t , t) (9.5)

λ̇∗
t =

−∂H
∂x

∣∣∣∣
(x∗

t ,u∗
t ,λ

∗
t ,γ ,t)

≡ −γ
∂ℓ(x∗

t , u
∗
t , t)

∂x
− ∂ f (x∗

t , u
∗
t , t)

∂x

⊤
λ∗
t (9.6)

subject to x∗
t0 = x0 and x∗

t f = x f . If the problem is normal (see, e.g., [24]), it is
possible to satisfy the necessary conditions with the constant γ taken to be 1.

In contrast to the Minimum Principle which is well suited for fixed terminal state
problems, Dynamic Programming [4] and the associated Hamilton Jacobi Bellman
(HJB) equation (see, e.g., [55]) is not able to handle terminal state constraints. As
noted by [48] for terminally constrained problems of the type xt f ∈ S ⊂ Rn , “the
value function has at most only a subsidiary role. This is because, unless stringent
conditions are imposed on the data, we cannot expect any longer that the value
function will be defined on a sufficiently large subset of R × Rn , or be sufficiently
regular, for it to serve as a Carathéodory function”. When the set S becomes a
singleton, i.e., xt f ∈ {x f }, then the HJB equation

∂V (t, x)
∂t

+ inf
u∈U

[(
∂V (t, x)

∂x

)⊤
f (x, u, t)+ ℓ(x, u, t)

]

= 0 (9.7)

becomes subject to the singular terminal condition

V (t f , x) =
{
0, x = x f ,

∞, x ̸= x f .
(9.8)

However, by invoking convex duality relation between the space of measures and
that of continuous functions, it is possible [48–51] that the value function can be
identified as the upper envelope (i.e., supremum) of the smooth subsolutions of the
Hamilton-Jacobi inequalities [48]

V (t0, x0) = sup
v∈C1([t0,t f ]×Rn)

{
v(t0, x0) :

∂v(t, x)
∂t

+
(

∂v(t, x)
∂x

)⊤
f (x, u, t)+ ℓ(x, u, t) ≥ 0,

v(t f , x) ≤ 0, for x = x f .

}
(9.9)
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While the above result is promising in the sense that it shows the ability of convex
duality method to provide a solution to the deterministic fixed endpoint problem, its
special form in its deterministic setting hinders the true nature of this identification
and it cannot be directly extended for its stochastic equivalent problem. As a matter
of fact, if instead of the above identification, [48] presented their results as

V (t0, x0) = sup
v∈C1([t0,t f ]×Rn)

{
v(t0, x0) − v(t f , x f ) :

∂v(t, x)
∂t

+
(

∂v(t, x)
∂x

)⊤
f (x, u, t)+ ℓ(x, u, t) ≥ 0,

v(t f , x) ≤ 0, for all x ∈ Rn .

}
(9.10)

then the discovery of its stochastic counterpart would have been made much earlier
than [35] and Theorem 3 in this article.

9.3 The Stochastic Versions of the “Fixed” Endpoint
Problem

We now formulate the stochastic equivalent of the deterministic fixed endpoint prob-
lem.

Let
(
%,F , {Ft }t ft=t0 ,P

)
be afilteredprobability spacewithFt being an increasing

family of subσ -algebras ofF such thatFt0 contains all theP-null sets, andFt f = F
for a fixed terminal time t f < ∞. Consider a nonlinear stochastic systems governed
by the controlled Itô differential equation

dxs = f (s, xs, us)ds + g (s, xs)dws, (9.11)

where, at each s ∈ [t0, t f ], the system’s state is denoted by xs ∈ Rn , its input is
denoted by us ∈ U ⊂ Rm , and the realization of a standardWiener process is denoted
by ws ∈ Rd . The input value set U is assumed to be convex and compact and the
functions f and g are considered to be Lipschitz continuous functions over, respec-
tively, [t0, t f ] × Rn ×U and [t0, t f ] × Rn , which satisfy either boundedness or linear
growth conditions.

Let [u] :=
{
us : t0 ≤ s ≤ t f

}
denote a nonanticipative, U -valued, input process

such that us ∈ U is progressively measurable with respect to Fs for all s ∈ [t0, t f ].
We denote by U the set of all such inputs. We remark that the underlying policy for
the determination of the input process [u] can take any form, as long as the policy
remains causal, that is, us does not depend on future values of the noise or the state.
For instance, within a comprehensive closed loop policy, us is permitted to depend
on s, [x]st0 , [w]st0 , [u]st0 and expectations of their future values under theFs filtration.
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However, it can be shown that there is no loss of optimality in feedback structures
where us depends only on s, xs and expectations of the cost gradient under the Fs

filtration.
In this paper,we consider only the casewith complete and accurate observations of

the state. Thus, for time instances t and s such that t0 ≤ t ≤ s ≤ t f , within the interval
[t0, t f ], and under the filtrationFt , the variable xs is treated as a deterministic variable
whenever s ≤ t , and is treated as a random variable whenever s > t . However, at all
future instances, s ∈ (t, t f ], the state value xs remains a random variable under the
filtrationFt . We define the notation

E[u]
F t
[xs] := E

[
xs

∣∣Ft ; [u]t ft
]

≡ E
[
xs

∣∣Ft ; [u]st
]
, (9.12)

for the expected value1 of xs at s ∈ [t, t f ], under the filtration Ft and given the
input process [u]t ft , where the last equality (conditioning on [u]st instead of [u]t ft ) is
a consequence of the causality of the controlled process in (9.11).

The associated optimal control problem corresponds to the minimization of the
cost

J
(
t, xt ; [u]t ft

)
:= E[u]

F t

⎡

⎣
t f∫

t

ℓ(xs, us)ds + L
(
xt f

)
⎤

⎦ . (9.13)

subject to appropriate terminal state constraint where, in the above cost, ℓ is a con-
tinuous function with polynomial growth.

A naïve approach for the consideration of terminal state constraints is to impose
the constraint xt f = x f on the stochastic system (9.11). However, such a constraint
violates causality as under each filtrationFt at time t ∈ [t0, t f ], future values of the
state, i.e., {xs : s ∈ (t, t f ]} are randomvariable and, hence, it is not possible (i.e., there
does not exists any nonanticipative input process [u] such that the random variable
xt f becomes deterministic so that it then satisfies a constraint such as xt f = x f .

Another approach for the consideration of terminal state constraints is to impose
the constraint xt f

a.s.= x f on the stochastic system (9.11). This constraint can be equiv-
alently expressed as P(xt f = x f ) = 1 or P(xt f ̸= x f ) = 0. While this constraint is
both mathematically well-posed and practically desirable, a major challenge is the
absence of theoretical guarantees of this time for stochastic processes.

In this article, we presents two novel approaches for the consideration of termi-
nal state constraints on nonlinear stochastic systems, and each providing theoretical
guarantees for optimality and the satisfaction of the associated terminal state con-
straints.

The first method is to impose a terminal state constraint as

E[u]
F t
[xt f ] = x f , (9.14)

1 Since xs becomes deterministic for s = t , and thus, E[u]
F t

[xs ] ≡ E[u]
F t

[xt ] = xt whenever s = t .
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at all time instances t ∈ [t0, t f ], in order for the state to be steered to a desired value
x f ∈ Rn

The second method is to impose a terminal state constraint as x [u]t f ∼ pd , i.e., we
require the probability distribution of the terminal state to take the desired form pd .
This, by definition, signifies that for every Borel set Bx ∈ Rn ,

P[u](xt f ∈ Bx
)
=

∫

Bx

pd(dx), (9.15)

where P[u](·) denotes the probability of an event given the input [u].

9.4 Constraining the Family of Conditional Expectations
of the Terminal State

As mentioned earlier, in this method we impose a family terminal state constraints
in the form of

E[u]
F t
[xt f ] = x f , (9.16)

at all time instances t ∈ [t0, t f ], in order for the state to be steered to a desired value
x f ∈ Rn . Our strategy to solve this problem hinges on the restriction of the class of
controllers to those yielding the expected value of the terminal state matching the
desired value under filtrations at all future times. The novelty of this approach lies
within its change of viewpoint, from the conventional conditioning the probability
distributions on the information available at the design time, to the less explored, and
mathematically more elaborate, approach of conditioning these probabilities on the
family of σ -algebras of all possible scenarios for future uncertainties.

In the absence of the constraint (9.16), there are several versions of the Stochastic
Maximum Principle (SMP), see, e.g., [55] for historical remarks on the development
of the SMP. For the case of problems with terminal constraints, [41] first considered
the case of a terminal constraint in the form of the total expectation of a nonlinear
function of the state, including the terminal state constraint (9.16) consisting of n
individual constraintsE[u]

F t

[
x (i)t f

]
= µ

(i)
f , ( i = 1, 2, · · · , n). However, the implemen-

tation of [41] still uses conditioning under the total expectation, which is equivalent
to the filtration Ft0 , instead of imposing the expectation on the σ -algebra of all
potential realizations of the information at time t which are contained inFt .
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9.4.1 Terminally Constrained Stochastic Minimum Principle
(TC–SMP)

Theorem 1 [39] For the system (9.11), the optimal input for the cost (9.13) subject
to the constraint (9.16) is determined from

u∗
s = argmin

u∈U⊂Rm

{
ℓ(xs, u)+ λ⊤

s f (xs, u)
}
, (9.17)

where the adjoint pair (λs,'s), s ∈ [t, t f ] are governed by the backward stochastic
differential equation

dλs = −
(

∂ f (x∗
s , u

∗
s )

∂x
λs +

∂ℓ(x∗
s , u

∗
s )

∂x

)
ds + 'sdws, (9.18)

subject to the terminal condition

λt f = α
∂L(x∗

t f )

∂x
+ β, (9.19)

where α ∈ R and β ∈ Rn are constants which are not simultaneously zero. !

It shall be remarked that, as is conventional for backward stochastic processes, the
second-order adjoint process ' is implicitly defined as the (unique) process leading
to the statisfaction of the terminal condition in (9.19). However, under sufficient
smoothness of the functions, it has been shown (see e.g. [26]) that

's = g(xs)⊤
∂

∂x
λ
(
s, xs

)
(9.20)

This is due to the fact that, whenever there exist a twice continuously differentiable
function λ̃ such that λs = λ̃(s, xs), a direct application of Itô’s formula yields

dλ̃(s, xs) =
(

∂λ̃(s, xs)
∂s

+ ∂λ̃(s, xs)
∂x

⊤
f (xs, us)

+ 1
2
tr
(
g(xs)⊤g(xs)

∂2λ̃(s, xs)
∂x2

))
ds + g(xs)⊤

∂λ̃(s, xs)
∂x

dws

λs=λ̃(s,xs )
↓= dλs

(9.18)= −
(

∂ f (xs, us)
∂x

λs +
∂l(xs, us)

∂x

)
ds + 'sdws (9.21)

which requires that
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− ∂l(xs, us)
∂x

− ∂ f (xs, us)
∂x

λ̃(s, xs) =
∂λ̃(s, xs)

∂s

+ ∂λ̃(s, xs)
∂x

⊤
f (xs, us)+

1
2
tr
(
g(xs)⊤g(xs)

∂2λ̃(s, xs)
∂x2

)
, (9.22)

's = g(xs)⊤
∂λ̃(s, xs)

∂x
. (9.23)

It shall be remarked that (9.22) is a partial differential equation (PDE).2 Thus,
it is possible to obtain the solution to the adjoint equation (9.18) from the solution
of (9.22). However, it is possible (and in certain applications, it is more numeri-
cally efficient) to directly solve the adjoint equation (9.18) while invoking (9.23) to
accelerate numerical integrations.

A general solution methodology for the TC-SMP is as follows.

• Step 1: Select ϵ > 0, set the iteration counter to k = 0, and initiate the algorithm
with an arbitrary control policy π k , such that us = π k(s, xs). Discretize the time
interval [t0, t f ] into a set of discrete times {t0, t1, . . . , ti , . . . , tN = t f }.

• Step 2: For M realizations of the Wiener process w, generate sample paths for the
state forward in time using the policy π k :

xti+1 = xti + f
(
xti ,π

k(ti , xti )
)
,ti + g

(
xti

)
,wi , xt0 = x0.

• Step 3: For each sample path, compute the associated adjoint processes backward
in time using

λk
tN = α

∂L(xtN )
∂x

+ β,

'k
tN = αg

(
xti

)⊤ ∂2 L(xtN )
∂x2

λk
ti−1

= λk
ti − Eπ k

ti−1,xti−1

[(
∂ f

(
xti ,π

k(ti , xti )
)

∂x
λk
ti

+ ∂ℓ
(
xti ,π

k(ti , xti )
)

∂x

)
,ti − 'k

ti ,wi

]
,

'k
ti−1

≈ 1
,ti−1

Eπ k

ti−1,xti−1

[
,wi−1λ

k
ti

]
,

2 Notice that in the classical (free end-point) LQG case where f (x, u∗) = Ax + Bu∗ = Ax −
BR−1B⊤λ and l(x, u) = 1

2 x
⊤Qx + 1

2u
⊤Ru = x⊤Qx + λ⊤BR−1B⊤λ, the conjecture λ = -x

leads to the celebrated Riccati equation.More specifically, ∂l
∂x = Qx , ∂ f

∂x = A⊤, ∂λ
∂s = -̇x , ∂λ

∂x = -

and ∂2λ
∂x2 = 0. Substitution of these expressions into (9.22) yields

−Qx − A⊤-x = -̇x + -⊤(Ax − BR−1B⊤-x)+ 0 =
(
-̇ + -A − -BR−1B⊤-

)
x,

which, after cancelling out the x-factor, is the Riccati equation.
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• Step 4: Update the policy according to

π k+1(ti , x) = argmin
u∈Rm

{
ℓ(x, u)+ f (x, u)⊤λk

ti

}
.

• Step 5: If
∣∣J

(
π k

)
− J

(
π k−1

)∣∣ < ϵ, stop. Otherwise, increment k by and 1 and go
to Step 1.

9.4.2 TC-SMP for Linear Quadratic Problems

In this section, we present the analytical solutions to the the TC-SMP in Theorem 1
for linear stochastic systems with quadratic cost. To this end, let the dynamics (9.11)
be of the form

dxs =
(
Asxs + Bsus

)
ds + Dsdws, (9.24)

where the time varying parameters in the system dynamics A ∈ L∞([t0, t f ];Rn×n),
B ∈ L∞([t0, t f ];Rn×m), D ∈ L∞([t0, t f ];Rn×k), are essentially bounded measur-
able matrix functions of time.

For simplicity, we assume that the cost (9.13) is a quadratic function of the input
and the terminal state, that is,

J
(
t, xt , [u]t ft

)
:= 1

2
E[u]
F t

[ t f∫

t

u⊤
s Rsusds + (xt f − µ f )

⊤Hf (xt f − µ f )

]
, (9.25)

with R ∈ L∞([t0, t f ];Sm×m), Rs > 0, for all s ∈ [t0, t f ], and Hf ∈ Sn×n , Hf ≥ 0,
where Sm×m denotes the space of m × m-dimensional symmetric matrices.

We assume that the system (As, Bs) is controllable,3 and that the system is noise
controllable,4 equivalently, Im(Ds) ⊂ Im(Bs), for all s ∈ [t0, t f ], that is,

∀w ∈ Rk, ∃u ∈ Rm s.t. Bsu = Dsw. (9.26)

Theorem 2 [38, 39] For the system (9.24) and the cost (9.25) subject to the constraint
(9.16), the optimal input is determined by

3 Hence, the Gramian (9.29) is full rank.
4 As a requirement for solvability of the Riccati equations (9.30) and (9.31).
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u∗
s = −R−1

s B⊤
s .(t f , s)⊤

[
G(t, t f )

]−1 (
.(t f , t)xt − µ f

)

− R−1
s B⊤

s -(s; t f )
(
xs − .(t; s)xt

+ G(t, s).(s; t f )⊤
[
G(t, t f )

]−1
(
.(t; t f )xt − µ f

))
, (9.27)

where .(t; s) ∈ Rn×n is the state transition matrix from t to s for the system (9.24),
which is the solution of

.̇ ≡ ∂.(t; s)
∂s

= As., .(t; t) = In×n, (9.28)

and where

G(τ, t) :=
τ∫

t

.(s; τ )Bs R−1
s B⊤

s .(s; τ )⊤ds, (9.29)

is the controllability Gramian (see e.g., [8, Theorem 6.1]) over the horizon [t, τ ] ⊂
[t0, t f ], and -(s; t f ) is the solution of the following Riccati equation

-̇s ≡ d
ds

-(s; t f ) = -s Bs R−1
s B⊤

s -s − -s As − A⊤
s -s, (9.30)

subject to the terminal condition

-(t f ; t f ) = Hf . (9.31)

!

9.4.3 Numerical Illustrations

In order to illustrate the results of Theorem 1 and its specialization to linear quadratic
Gaussian problems, Theorem 2, let us consider the following examples.

Example 1 Consider the scalar case of a linear stochastic system with the dynamics

dxs := (axs − bus)ds + ddws, (9.32)

with a, b, d scalar constants, and consider the problem of steering the state to the
desired value µ f ∈ R by enforcing

E[u]
F t
[xt f ] = µ f , (16)
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at all t ∈ [t0, t f ], with the cost

J
(
t, xt , [u]t ft

)
:= 1

2
E[u]
F t

[ t f∫

t

r u2sds + h(xt f − µ f )
2
]
. (9.33)

where r > 0 and h ∈ R≥0 \ {2ar/b2}.5
For this problem, we can analytically represent ., G and - as

.(t; s) = ea(s−t), (9.34)

G(t, τ ) = b2

2a
e2a t f

(
e−2a t − e−2a τ

)
, (9.35)

-(s; t f ) =
2ar

b2
(
1 − h

h− 2ar
b2
e

b2
r (t f −s)

) . (9.36)

and, therefore, the optimal input (9.27) becomes

u∗
s =

−2a
br

(
e2a(t f −t) − 1

)ea(t f −s) (ea(t f −t)xt − µ f
)

− 2a

b
(
1 − h

h− 2ar
b2
e

b2
r (t f −s)

)
(
xs − ea(s−t)xt

+ ea(t f −s) e
−2at − e−2as

e−2at − e−2at f

(
ea(t f −t)xt − µ f

))
.

(9.37)

Let a = b = d = r = h = 1, and the time horizon be [t0, t f ] = [0, 2]. For the
steering towards the desired stated µ f = 5, from the initial condition x0 = −3, the
optimal input satisfying (9.16) for all t ∈ [0, 2], and the associated trajectories for 50
sample paths are illustrated in Fig. 9.1. As can be seen from the figure, all trajectories
are almost surely driven to the required terminal state at t = t f . The associated
probability distributions for the state and the input processes from the implementation
of the TC-SMP on this system are illustrated in Fig. 9.2. It can be observed that the
state distribution, starting from a lumped delta distribution at the initial condition, is
steered towards a delta distribution at the desired terminal state while in intermediate
times the state distribution does not remain lumped. In contrast, the input distribution,
starting from a lumped delta distribution, does not remain lumped at any later time,
which shows that the satisfaction of the desired terminal state comes at the expense
of input uncertainty at later times over a wide range of values.

5 The exclusion of this value, which occurs only if a > 0, is due to the appearance of h − 2ar/b2

as a denominator in (9.37).
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Fig. 9.1 Sample paths associated with the implementation of the terminally constrained stochastic
minimum principle (TC-SMP) on the system in Example 1
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Fig. 9.2 Probability distributions associated with the implementation of the terminally constrained
stochastic minimum principle (TC-SMP) on the system in Example 1



150 A. Pakniyat

Fig. 9.3 The implementation of the terminally constrained stochastic minimum principle (TC-
SMP) on the system in Example 2
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Fig. 9.4 The evolution of probability distributions of the state (top) and the input process (bottom)
associated with the implementation of the terminally constrained stochastic minimum principle
(TC-SMP) on the system in Example 2
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Example 2 Consider the system governed by

dxs =
([

0 1
2 −3

][
x (1)s
x (2)s

]
+

[
0
1

]
us

)
ds +

[
0
1

]
dws, (9.38)

over the time horizon [t0, t f ] = [0, 1], starting from the initial condition x0 =
[−1,−1]⊤, and steered towards the desired terminal state by enforcing

E[u]
F t
[x1] =

[
3

−2

]
, (9.39)

at all t ∈ [0, 1], and consider the associated optimal control problem with the cost

J
(
t, xt , [u]

)
:= E[u]

F t

[ t f∫

t

1
2
u2sds +

1
2

∥∥xt f − µ f
∥∥2

]
. (9.40)

The implementation of the TC-SMP for 50 Sample paths are illustrated in Fig. 9.3
and the evolution of the associated probability distributions for the state process and
the input process are displayed in Fig. 9.4. In order to better illustrate the evolution
of the probability distribution of the state process, the associated 3 dimensional
snapshots of the state distribution at times t ∈ {0, 0.1, . . . , 0.9, 1} are displayed. As
can be observed in these figures, the TC-SMP steers all trajectory realizations to
the final desired state. It is worth remarking that the enforcement of the terminal
state constraint (9.16) especially when t → t f , forces the controller to consume as
much large values as required, that for xt realizations away fromµ f , this requires the
consumption of large input values. This can also be deduced from expression (9.27)
for the optimal input, by noting that G(t, t f ) → 0 and therefore its inverse becomes
as t → t f . It shall, however, be remarked that the associated singularity is isolated
by noting that t ≤ s ≤ t f

9.5 Constraining the Probability Distribution
of the Terminal State

As mentioned earlier, in this method, we impose a terminal state constraint as x [u]t f ∼
pd , i.e., we require the probability distribution of the terminal state to take the desired
form pd . This, by definition, signifies that for every Borel set Bx ∈ Rn ,

P[u](xt f ∈ Bx
)
=

∫

Bx

pd(dx), (9.41)
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whereP[u](·) denotes the probability of an event given the input [u]. Hence, the value
function at the initial time and state is defined as

V (t0, x0) = inf
[u]∈U

{
E[u]

[ t f∫

t0

ℓ (xs, us) ds
]
s.t. x [u]T ∼ pd

}
(P)

In the absence of the constraint (9.41), one can invoke the convex duality approach of
[14] to identify the value function as the upper envelope of the smooth subsolutions
of the Hamilton-Jacobi and the associated boundary value inequalities. However, the
presence of the constraint requires a more elaborate version of the convex duality
approach established in [35] which is presented below.

9.5.1 Convex Duality and the Associated Hamilton–Jacobi
(HJ) Inequalities

Theorem 3 [35] For every x0 ∈ Rn and given a desired terminal distribution pd , the
optimal cost (P) is obtained as

V (t0, x0) = sup
v∈C2([t0,t f ]×Rn)

{
v(t0, x0) −

∫

Rn

v(t f , x)pd(dx),

s.t.
∂v(t, x)

∂t
+

[
∂v(t, x)

∂x

]⊤
f (t, x, u)

+ 1
2
tr
(
g(t, x)⊤g(t, x)

∂2v(t, x)
∂x2

)
+ ℓ(t, x, u) ≥ 0,

for all (t, x, u) ∈ [t0, t f ] × Rn ×U
}
. (9.42)

!
Based upon the Theorem 3, a general procedure for the numerical solution can

be developed as follows.

• Step 1: Set the iteration counter to k = 0, and initiate the algorithmwith an arbitrary
terminal cost function Lk(x).

• Step 2: Solve the HJB equation6

6 If a classical solution does not exist, one needs to consider an additional supremization over
subsolutions of the HJB, i.e., the family of functions (indexed by another iteration j , satisfying

the HJ inequalities
∂vkj (t,x)

∂t +minu∈U

{(
∂vkj (t,x)

∂x

)⊤
f (x, u, t)+ ℓ(x, u, t)

}
≥ 0, but subject to the

equality conditions vkj (t f , x) = Lk(x) for all j . However, it can be shown that the suprimizing
function (over all j) converges to the viscosity solution of the HJB equation (9.43).
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∂vk(t, x)
∂t

+min
u∈U

{(
∂vk(t, x)

∂x

)⊤
f (x, u, t)+ ℓ(x, u, t)

}
= 0, (9.43)

subject to vk(t f , x) = Lk(x).
• Step 3: Evaluate vk(t0, x0) −

∫
Rn v

k(t f , x)pd(dx).
• Step 4: Update Lk+1(x) using an ascent direction7 for the cost vk(t0, x0) −∫

Rn v
k(t f , x)pd(dx).

9.5.2 Numerical Illustration

In order to illustrate the results of Theorem 3 and the difficulties and challenges asso-
ciated with its algorithmic implementation let us consider the following examples.

Example 3 First, consider the the scalar system

dxs = (xs + us)ds + dws, (9.44)

with the total cost

J (t0, x0, [u]) = E
T∫

0

1
2
u2sds. (9.45)

and subject to the constraint xt f ∼ pd for the desired probability distribution pd =
N (µd , σd). In order to illustrate (9.42), consider the family of functions {vγ }γ∈R+×R,
where for each γ ≡ (hγ , µγ ), the function

vγ (t, x) =
1
2
π(t)x2 + β(t)x + α(t), (9.46)

is constructed from the Riccati equations

π̇(t) =
(
π(t)

)2 − 2π(t), π(T ) = hγ , (9.47)

β̇(t) = −
(
1 − π(t)

)
β(t), β(T ) = −hγµγ , (9.48)

α̇(t) = 1
2
(β(t)

)2 − 1
2
π(t), α(T ) = 1

2
hγµ

2
γ . (9.49)

Then for every γ≡(hγ , µγ ) ∈ [0,∞) × R, the corresponding function vγ (t, x) ∈
C∞([t0, t f ] × R) satisfies

7 Due to the computationally expensive nature of the cost, and the infinite dimensionality of the
space of terminal costs, derivative-free methods such as Bayesian optimization shall be used in this
general procedure.
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∂vγ (t, x)
∂t

+
[∂vγ (t, x)

∂x

]
(x + u)+ 1

2
∂2vγ (t, x)

∂x2
+ 1

2
u2 ≥ 0, (9.50)

for all (t, x, u) ∈ [t0, t f ] × R × R.
For x0 = 0, T = 2 and pd = N (3, 1), the values of vγ (0, x0) −

∫
Rn vγ (T, x) are

displayedover the region (hγ , µγ ) ∈ [0, 5] × [2.5, 3.5] in Fig. 9.5.As observed in the
simulation, for this family of HJ-subsolutions, the maximum occurs at (hγ ∗, µγ ∗) =
(0.96, 3). As shown in [9], for LQG problems with Gaussian desired distributions,
the value function is indeed quadratic and takes the Riccati form, and hence the
desired value function V coincides with vγ ∗ up to the constant

∫
Rn vγ ∗(T, x).

Example 4 Now consider consider the the scalar system

dxs = (xs + us)ds + dws, (9.51)

with the total cost

J (t0, x0, [u]) = E
T∫

0

1
2
u2sds. (9.52)

and subject to the constraint xt f ∼ pd where the desired probability distribution pd
is not Gaussian, e.g., when it’s a mixture of two Gaussian distributions, e.g., pd =
1
2N (µd

1 , σ
d
1 )+ 1

2N (µd
2 , σ

d
2 ). These problems, despite their LQ form of the dynamics

and cost, cannot be solved by the conventional covariance control methodologies,
e.g., [9]. In contrast, the results of Theorem 1 can be implemented in the following
way to identify the value function and the corresponding optimal policy, as explained
below.

Consider the family of functions {vγ } where for each γ = (ηγ , ργ , h
γ
1 , µ

γ
1 , h

γ
2 ,

µ
γ
2 ), the function

vγ (t, x) =
−1
ηγ

ln
(
e−ηγ ργ

(
1
2 π1(t) x2+β1(t) x+α1(t)

)

+ e−ηγ (1−ργ )
(

1
2 π2(t) x2+β2(t) x+α2(t)

))
(9.53)

where πi , βi , αi , i = 1, 2, satisfy (9.47)–(9.49) with (hγ , µγ ) = (hγ
i , µ

γ
i ). Then it

can be verified (see, e.g., [44]) that (9.53) satisfies the HJ-inequality (9.50) for all
(t, x, u) ∈ [t0, t f ] × R × R.

In order to restrict the search [as the primary purpose of the example is to illustrate
the characterization of the value function by (9.42)] we consider the symmetric case
where µd

1 = −µd
2 = µd , σ d

1 = σ d
2 , and x0 = (µ

γ
1 + µ

γ
2 )/2 = 0, thus ργ = 1/2, and

µ
γ
1 = µd , andµγ

2 = −µd . In particular, we consider the casewith x0 = 0, T = 2 and
the desired distribution pd = 1

2N (3, 1)+ 1
2N (−3, 1), and hence we restrict atten-

tion to the sequence of functions parameterized by γ = (ηγ ,
1
2 , hγ , 3, hγ ,−3) ≡



156 A. Pakniyat

(a)

(b)

Fig. 9.5 The identification of the parameters of the value function for x0 = 0, T = 2 and the desired
distribution pd = N (3, 1) employing (9.42) and the class of functions {vγ } defined by (9.46). a
Parameterization. b Associated limiting function. c Trajectories of 200 optimal sample paths. d
Distribution pf xT for 100,000 sample paths versus desired distribution
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(c) 
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Desired

(d)

Fig. 9.5 (continued)

(ηγ , hγ ). The corresponding values of vγ (0, x0) −
∫
Rn vγ (T, x) are displayed over

the region (ηγ , hγ ) ∈ [1, 103] × [0, 4] in Fig. 9.6.
As observed inFig. 9.6a, for the family (9.53) ofHJ-subsolutions, the supremum in

not attained over the bounded domain and, while hγ ∗ = 0.97, the suprimum requires
ηγ → ∞. Indeed, the value function in this case is nonsmooth and is required to be
identified from lim(ηγ ,hγ )→(∞,0.97) vγ (t, x) as displayed in Fig. 9.6b.
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(b) 

(a) 

Fig. 9.6 The identification of parameters (a), the associated value function (b), sample paths (c), and
the corresponding distribution (d) for x0 = 0, T = 2 and pd = 1

2N (3, 1)+ 1
2N (−3, 1) employing

(9.42) and the class of functions {vγ } defined by (9.53). a Parameterization. b Associated limiting
function. c Trajectories of 200 optimal sample paths. dDistribution pf xT for 100,000 sample paths
versus desired distribution
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(c)
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(d)  

Fig. 9.6 (continued)

In order to illustrate that the desired probability distribution is attained, the opti-
mal trajectories of 200 sample paths are displayed in Fig. 9.6c and the empirical
distribution of these trajectories obtained from 100,000 sample paths are displayed
in Fig. 9.6d.
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9.6 Concluding Remarks

This article presents two novel approaches for steering the state of nonlinear stochas-
tic systems towards a desired value. Since equating the random variable of the term
state to the desired value violates causality requirements, each of the presented meth-
ods provide an alternative causal expression of the terminal state requirement, and
for each of these alternatives, theoretical guarantees for optimality and the satisfac-
tion of the associated terminal state constraints are provided. The first approach is to
impose a constraint on the first moment (expected value) of of the terminal state and
to reimpose this constraint under conditional expectations at all future times. For this
case the associated optimality conditions are expressed in the form of the Terminally
Constrained Stochastic Minimum Principle (TC-SMP). The second approach is to
impose a terminal state constraint as the matching of the probability distribution of
the terminal state with a desired probability distribution in which case the associ-
ated optimality conditions are expressed using Hamilton-Jacobi (HJ) type equations.
While both the TC-SMP and the convex duality based HJ inequalities are power
methods in establishing the necessary optimality conditions for their corresponding
optimal control problems, it is worth comparing the two.

The TC-SMP performs very successfully in terms of steering of the state towards
the desired location an almost all sample paths are being steered to the desired value,
however, this is achieved at the expense of increased control effort at the final time.
Numerical examples illustrate that the TC-SMP achieves it goal by exploiting the
unboundedness of the input value set. In other words, the enforcement of the terminal
state constraint (9.16) especially when t → t f , forces the controller to consume as
much large values as required, that for xt realizations away fromµ f , this requires the
consumption of large input values. This can also be deduced from expression (9.27)
for the optimal input of the LQG case, by noting that G(t, t f ) → 0 and therefore
its inverse becomes as t → t f . It shall, however, be remarked that the associated
singularity is isolated by noting that t ≤ s ≤ t f .

The convex duality approach, in contrast, is by definition a methodology for
problems subject to terminal constraints of distribution type and, hence, its accuracy
in delivering the state to a desired value depends on the expression of the desired
probability distribution. Moreover, due to the involvement of the second moment
(covariance) and higher order moments of the state distribution, this approach is
inevitably time-inconsistent as the desired probability itself is only expressed under
the total (andnot other conditional) probabilitymeasure.The convexduality approach
characterizes the value function by a set of Hamilton-Jacobi type conditions. A
benefit of this characterization is that it holds true despite potential nonsmoothness
of the value function. However, special care must be taken as (i) the sequence of test
functions might converge to a value smaller than the optimal cost which suggests that
the family of functions does not contain a function characterizing the value function,
or (ii) a maximum does not exist but the suprimum (and hence the value function)
can be characterized from the limiting behavior of the associated family of functions.
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In both of these cases, a notion of suboptimality is required to be developed when
the solution is numerically constructed from the associated optimization problem.

Future research directions include the accommodation of chance constraints,
which are probabilistic constraints that impose a maximum probability of constraint
violation, as a nonlinear systems extension of those established for linear systems in
[31, 32], and also the accommodation of hybrid systems features, in particular the
presence of controlled and autonomous switchings with exact equality and almost
surely equality constraints as switchingmanifolds as in [33] and nonlinear jumpmaps
as in [34, 36], as well as the development of numerical algorithms for numerical solu-
tions, including the stochastic version of the Hybrid Minimum Principle - Multiple
Autonomous Switching Algorithm [37], and Feynman-Kac based algorithms as in
[18–20].

Acknowledgements Discussions concerning this work with Panagiotis Tsiotras are gratefully
acknowledged.
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