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Abstract: This paper studies a multi-modal robotic system referred to as a flying+sailing drone
with the consideration of six degrees of freedom (6-DoF) for flying and 5-DoF for sailing,
i.e., a twelve-dimensional state space for flying and a ten-dimensional state space for sailing.
Key characteristics of hybrid systems emerging in tasks involving both flying and sailing are
(i) changes in the dimension of the state space as the system switches from flying to sailing and
vice versa, (ii) the presence of autonomous switchings triggered upon the landing of the drone on
the water surface, and (iii) non-identity jumps in the state upon switching. For the scenario in
which the drone’s initial state is in the flying mode and a fixed terminal state is specified in the
sailing mode, the associated optimal control problems are studied for the minimization of time
and the minimization of the control effort. The necessary optimality conditions are obtained from
the Hybrid Minimum Principle (HMP), and the associated numerical simulations are presented.
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1. INTRODUCTION

Over the past few decades, the need for multi-modal
autonomous robotics systems has emerged in several civil,
commercial, and military applications. As, for instance,
remarked by (Ackerman, 2022), for quick and efficient
military organizations, there is a grave need for a combined
robotic system capable of providing services of energy-
efficient but slow-moving ships combined with fast but
energy-consuming planes. As another example, a multi-
modal robotic system inspired by animals and capable of
walking and flying is presented in (Sihite et al., 2023).
The emergence of these multi-modal control systems calls
for the development of fast and efficient control synthesis
algorithms capable of handling the “hybrid” nature of
these systems. Moreover, fulfilling requirements such as
the minimization of time and the minimization of energy
consumption in performing the tasks is a significant aspect
of the control synthesis in several applications, e.g., in the
search and rescue of humans in coasts, where quick human
detection is vital (Qingqing et al., 2020; Ho et al., 2022).

In past work of the authors (Yasini and Pakniyat, 2023),
a hybrid systems formulation for the planar motion of a
drone capable of both flying and sailing is established and
solutions to the associated hybrid optimal control prob-
lems are presented. This paper extends upon that work by
permitting both in-plane and out-of-plane motions for the
flying+sailing drone with the consideration of 6-DoF for
flying and 5-DoF for sailing. This elaborates on the hybrid
systems formulation to represent the flying dynamics in a
twelve-dimensional state space and the sailing dynamics in
a ten-dimensional state space. For this elaborated formu-

lation, we present and solve the hybrid optimal control
problems for time and control effort minimization in a
scenario with the system’s initial condition provided in
the flying mode and a fixed desired terminal condition
in the sailing mode which, necessarily, requires the drone
to switch from flying to sailing at an intermediate time
during its motion. This switching is possible only when the
drone reaches the water surface and, hence, it constitutes
an autonomous switching. Upon switching the dynamics
from flying to sailing, the dimension of the state space nec-
essarily changes as the drone’s motion becomes restricted
to the water surface.

Theoretical foundations of this work rely on the Hybrid
Minimum Principle (HMP) which has been extensively
researched in the control theory literature (Shaikh and
Caines, 2007; Pakniyat and Caines, 2016, 2017a, 2021,
2023) and, in particular, the version of the HMP with
explicit expressions of the boundary conditions for the
Hamiltonians and adjoint processes (Pakniyat and Caines,
2021, 2023). The HMP-based multiple autonomous switch-
ing (HMP–MAS) algorithm (Shaikh and Caines, 2007;
Pakniyat and Caines, 2021), which has been tailored in
(Yasini and Pakniyat, 2023) for the in-plane motion of
the flying+sailing drone is also extended in this work for
general out-of-plane motions.

The structure of the article is as follows. Section 2 presents
the hybrid optimal control formulation of the 6-DoF and
5-DoF of the flying+sailing drone. Sections 3 and 4, re-
spectively, present the implementation of the HMP for the
minimization of the total control effort, and the minimiza-
tion of the time required for the drone to reach the desired
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ẋ = fflying(x, u)

x ∈ R12

u ∈ U ⊂ R4

ẋ = fsailing(x, u)

x ∈ R10

u ∈ U ⊂ R4

m(x) ≡ z = 0 → σland

xsail = ξfs(xfly)

σfly

xfly = ξsf (xsail)

Fig. 1. The hybrid automata for flying+sailing drone with
autonomous switching displayed in red arrows and
controlled switching displayed in green.

terminal state. Numerical simulations are presented in
Section 5. Conclusion and future research directions are
discussed in Section 6.

2. HYBRID SYSTEMS MODELING OF THE DRONE

2.1 Hybrid Systems Structure

Following (Pakniyat and Caines, 2017b, 2021, 2023), a
hybrid system (structure) H is considered as a septuple

H = {H, I,Γ, A, F,Ξ,M} , (1)

where H :=


q∈Q Rnq is the hybrid state space with

|Q| < ∞; in this article, Q = {q1, q2} ≡ {flying, sailing},
with nq1 = 12 and nq2 = 10.

I := Σ × U is the input value set with |Σ| < ∞, and
U ⊂ Rm; where, for flying+sailing drone, Σ = {σfly, σland}
and U ⊆ R4, with σfly corresponding to a controlled
switching command and σland an autonomous switching.

Γ : H × Σ → H is a discrete state transition map which,
for the flying+sailing drone, is displayed as part of Fig. 1.

A : Q× Σ → Q is the automaton’s transition function on
the state space Q and event set Σ, as displayed in Fig. 1.

F := {fq}q∈Q is an indexed collection of measurable
functions whose elements are presented in Section 2.2.

Ξ : H × Σ → H is a family of continuous state jump
transition maps which is presented in Section 2.2.

M is a collection of switching manifolds which is presented
in Section 2.2.

2.2 Hybrid Optimal Control Problem

The nonlinear dynamics of the drone in flying mode is
presented as

ẋq1 = fq1(xq1 , u) (2)

where the twelve-dimensional state space dynamics of the
drone in the flying mode is expressed as (Sabatino, 2015)

ẋ1 = x2

ẋ2 = − (sinx7 sinx11 + cosx7 cosx11 sinx9)uT

m
ẋ3 = x4

ẋ4 = − (cosx7 sinx9 sinx11 − cosx11 sinx7)uT

m
ẋ5 = x6

ẋ6 = g − (cosx7 cosx9)uT

m
ẋ7 = x8

ẋ8 =
Iy − Iz

Ix
x10x12 +

1

Ix
ux

ẋ9 = x10

ẋ10 =
Iz − Ix

Iy
x8x12 +

1

Iy
uy

ẋ11 = x12

ẋ12 =
Ix − Iy

Iz
x8x10 +

1

Iz
uz (3)

subject to the initial condition xq1(t0) = x0, where m is
the mass of the drone, g is the gravitational acceleration
and Ix, Iy and Iz are inertia values around x, y, z axes,
x1, x3 and x5 are, respectively, the horizontal, lateral,
and vertical positions of the drone, x2, x4 and x6 are,
respectively, the horizontal, lateral and vertical velocities.
x7, x9 and x11 are, respectively, roll, pitch, and yaw angles,
and x8, x10, and x11 are the rate of the angles respectively.
uT is the total thrust force produced by all rotors which
are taking values from the set [−10,+10] and ux, uy,
and uz are, respectively, the control torques generated by
differences in the rotor’s speeds which are taking values
from the set [−1,+1]. The drone parameters are as Table 1.

The nonlinear dynamic of the drone in the sailing mode is
written as

ẋq2 = fq2(xq2 , u) (4)
where the ten-dimensional state space dynamic of the
drone in the sailing mode is expressed as

ẋ1 = x2

ẋ2 = − (sinx5 sinx9 + cosx5 cosx9 sinx7)uT − γ1x
2
2

m
ẋ3 = x4

ẋ4 = − (cosx5 sinx7 sinx9 − cosx9 sinx5)uT − γ2x
2
4

m
ẋ5 = x6

ẋ6 =
Iy − Iz

Ix
x8x10 +

1

Ix
ux

ẋ7 = x8

ẋ8 =
Iz − Ix

Iy
x6x10 +

1

Iy
uy

ẋ9 = x10

ẋ10 =
Ix − Iy

Iz
x6x8 +

1

Iz
uz (5)

where x1 to x4 are as before, and x5 to x10 are as x7 to
x12 in the flying mode and γ1 and γ2 are drag coefficients
along x and y, respectively. At the switching instant, the
system’s state before and after switching are related by
the boundary condition

xq2(ts) = ξq1q2
�
xq1(ts−)


≡ ξq1q2


lim
t→ts

xq1(t)


(6)

where ts indicates the time of the autonomous switching,
when the drone finishes flying and begins sailing, and ξq1q2
is the state transition jump map described by

xq2 ≡




x1(ts)
x2(ts)
x3(ts)
x4(ts)
x5(ts)
x6(ts)
x7(ts)
x8(ts)
x9(ts)
x10(ts)




= ξq1q2(xq1(ts−)) =




x1(ts−)
x2(ts−)
x3(ts−)
x4(ts−)
x7(ts−)
x8(ts−)

x9(ts−) + δ
x10(ts−)
x11(ts−)
x12(ts−)




(7)
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ẋ = fflying(x, u)

x ∈ R12

u ∈ U ⊂ R4

ẋ = fsailing(x, u)

x ∈ R10

u ∈ U ⊂ R4

m(x) ≡ z = 0 → σland

xsail = ξfs(xfly)

σfly

xfly = ξsf (xsail)

Fig. 1. The hybrid automata for flying+sailing drone with
autonomous switching displayed in red arrows and
controlled switching displayed in green.

terminal state. Numerical simulations are presented in
Section 5. Conclusion and future research directions are
discussed in Section 6.

2. HYBRID SYSTEMS MODELING OF THE DRONE

2.1 Hybrid Systems Structure

Following (Pakniyat and Caines, 2017b, 2021, 2023), a
hybrid system (structure) H is considered as a septuple

H = {H, I,Γ, A, F,Ξ,M} , (1)

where H :=


q∈Q Rnq is the hybrid state space with

|Q| < ∞; in this article, Q = {q1, q2} ≡ {flying, sailing},
with nq1 = 12 and nq2 = 10.

I := Σ × U is the input value set with |Σ| < ∞, and
U ⊂ Rm; where, for flying+sailing drone, Σ = {σfly, σland}
and U ⊆ R4, with σfly corresponding to a controlled
switching command and σland an autonomous switching.

Γ : H × Σ → H is a discrete state transition map which,
for the flying+sailing drone, is displayed as part of Fig. 1.

A : Q× Σ → Q is the automaton’s transition function on
the state space Q and event set Σ, as displayed in Fig. 1.

F := {fq}q∈Q is an indexed collection of measurable
functions whose elements are presented in Section 2.2.

Ξ : H × Σ → H is a family of continuous state jump
transition maps which is presented in Section 2.2.

M is a collection of switching manifolds which is presented
in Section 2.2.

2.2 Hybrid Optimal Control Problem

The nonlinear dynamics of the drone in flying mode is
presented as

ẋq1 = fq1(xq1 , u) (2)

where the twelve-dimensional state space dynamics of the
drone in the flying mode is expressed as (Sabatino, 2015)

ẋ1 = x2

ẋ2 = − (sinx7 sinx11 + cosx7 cosx11 sinx9)uT

m
ẋ3 = x4

ẋ4 = − (cosx7 sinx9 sinx11 − cosx11 sinx7)uT

m
ẋ5 = x6

ẋ6 = g − (cosx7 cosx9)uT

m
ẋ7 = x8

ẋ8 =
Iy − Iz

Ix
x10x12 +

1

Ix
ux

ẋ9 = x10

ẋ10 =
Iz − Ix

Iy
x8x12 +

1

Iy
uy

ẋ11 = x12

ẋ12 =
Ix − Iy

Iz
x8x10 +

1

Iz
uz (3)

subject to the initial condition xq1(t0) = x0, where m is
the mass of the drone, g is the gravitational acceleration
and Ix, Iy and Iz are inertia values around x, y, z axes,
x1, x3 and x5 are, respectively, the horizontal, lateral,
and vertical positions of the drone, x2, x4 and x6 are,
respectively, the horizontal, lateral and vertical velocities.
x7, x9 and x11 are, respectively, roll, pitch, and yaw angles,
and x8, x10, and x11 are the rate of the angles respectively.
uT is the total thrust force produced by all rotors which
are taking values from the set [−10,+10] and ux, uy,
and uz are, respectively, the control torques generated by
differences in the rotor’s speeds which are taking values
from the set [−1,+1]. The drone parameters are as Table 1.

The nonlinear dynamic of the drone in the sailing mode is
written as

ẋq2 = fq2(xq2 , u) (4)
where the ten-dimensional state space dynamic of the
drone in the sailing mode is expressed as

ẋ1 = x2

ẋ2 = − (sinx5 sinx9 + cosx5 cosx9 sinx7)uT − γ1x
2
2

m
ẋ3 = x4

ẋ4 = − (cosx5 sinx7 sinx9 − cosx9 sinx5)uT − γ2x
2
4

m
ẋ5 = x6

ẋ6 =
Iy − Iz

Ix
x8x10 +

1

Ix
ux

ẋ7 = x8

ẋ8 =
Iz − Ix

Iy
x6x10 +

1

Iy
uy

ẋ9 = x10

ẋ10 =
Ix − Iy

Iz
x6x8 +

1

Iz
uz (5)

where x1 to x4 are as before, and x5 to x10 are as x7 to
x12 in the flying mode and γ1 and γ2 are drag coefficients
along x and y, respectively. At the switching instant, the
system’s state before and after switching are related by
the boundary condition

xq2(ts) = ξq1q2
�
xq1(ts−)


≡ ξq1q2


lim
t→ts

xq1(t)


(6)

where ts indicates the time of the autonomous switching,
when the drone finishes flying and begins sailing, and ξq1q2
is the state transition jump map described by

xq2 ≡




x1(ts)
x2(ts)
x3(ts)
x4(ts)
x5(ts)
x6(ts)
x7(ts)
x8(ts)
x9(ts)
x10(ts)




= ξq1q2(xq1(ts−)) =




x1(ts−)
x2(ts−)
x3(ts−)
x4(ts−)
x7(ts−)
x8(ts−)

x9(ts−) + δ
x10(ts−)
x11(ts−)
x12(ts−)




(7)

where δ is the difference in the pitch angle between flying
and sailing modes. The switching manifold which is the
condition required to be satisfied for the flying mode to
end and for the sailing mode to begin and corresponds to
the drone landing over the water surface is expressed by
mq1q2(xq1) = 0, where mq1q2(xq1) = x5 ≡ z.

The objective of the associated hybrid optimal control
problem (HOCP) is to minimize the hybrid cost

J =

 ts

0

ℓq1
�
xq1(s), u(s)


ds+

 tf

ts

ℓq2
�
xq2(s), u(s)


ds (8)

subject to xq2(tf ) = xf , where ℓq1 and ℓq2 are cost
functions associated with flying and sailing, respectively.
In the problem of time minimization, the costs ℓq1 , ℓq2 are
set to be equal to 1, and in the case of minimizing the
control effort, these running cost functions are taken to be
1
2u

⊤Ru, where R = R⊤ > 0.

3. THE MINIMUM CONTROL EFFORT PROBLEM

3.1 Hamiltonian minimization

The Hamiltonian for flying mode is written as

Hq1 = ℓq1+λ⊤
q1fq1 =

1

2
u⊤Ru+λ1x2+λ3x4+λ11x12+λ9x10

− λ2
(sinx7 sinx11 + cosx7 cosx11 sinx9)uT

m
+ λ5x6

− λ4
(cosx7 sinx9 sinx11 − cosx11 sinx7)uT

m
+ λ7x8

+λ6


g− (cosx7 cosx9)uT

m


+λ8

Iy − Iz
Ix

x10x12+
1

Ix
ux



+λ10

Iz − Ix
Iy

x8x12+
1

Iy
uy


+λ12

Ix − Iy
Iz

x8x10+
1

Iz
uz



(9)

and the Hamiltonian for sailing mode is expressed as

Hq2 = ℓq2 + λ⊤
q2fq2 =

1

2
u⊤Ru+ λ1x2 − λ2γ1x

2
2 + λ3x4

− λ2
(sinx5 sinx9 + cosx5 cosx9 sinx7)uT

m
− λ4γ2x

2
4

− λ4
(cosx5 sinx7 sinx9 − cosx9 sinx5)uT

m
+ λ5x6

+ λ6

Iy − Iz
Ix

x8x10 +
1

Ix
ux


+ λ7x8 + λ9x10

+λ8

Iz − Ix
Iy

x6x10+
1

Iy
uy


+λ10

Ix − Iy
Iz

x6x8+
1

Iz
uz



(10)

Thus the Hamiltonian minimization for flying mode yields

∂Hq1

∂u
= 0 ⇒




uT = λ2
sinx7 sinx11 + cosx7 cosx11 sinx9

m

+λ4
cosx7 sinx9 sinx11 − cosx11 sinx7

m
+λ6

cosx7 cosx9

m

ux = − 1

Ix
λ8

uy = − 1

Iy
λ10

uz = − 1

Iz
λ12

(11)
and for sailing mode, it yields

∂Hq2

∂u
= 0 ⇒





uT = λ2
sinx5 sinx9 + cosx5 cosx9 sinx7

m

+λ4
cosx5 sinx7 sinx9 − cosx9 sinx5

m

ux = − 1

Ix
λ6

uy = − 1

Iy
λ8

uz = − 1

Iz
λ10

(12)

3.2 Evolution of the adjoint process

The Hamiltonian canonical equation in the HMP yields
the dynamics of the adjoint process for flying mode in
t ∈ [0, ts] as

λ̇1 = 0

λ̇2 = −λ1

λ̇3 = 0

λ̇4 = −λ3

λ̇5 = 0

λ̇6 = −λ5

λ̇7 = −λ2
(cosx7 sinx11 − sinx7 cosx11 sinx9)uT

m

+ λ4
(sinx7 sinx9 sinx11 + cosx11 cosx7)uT

m

+ λ6
(sinx7 cosx9)uT

m

λ̇8 = −λ7 −
Iz − Ix

Iy
λ10x12 −

Ix − Iy
Iz

λ12x10

λ̇9 = −λ2
(cosx7 cosx11 cosx9)uT

m

− λ4
(cosx7 cosx9 sinx11)uT

m
+ λ6

(cosx7 sinx9)uT

m

λ̇10 = −λ9 −
Iy − Iz

Ix
λ8x12 −

Ix − Iy
Iz

λ12x8

λ̇11 = −λ2
(sinx7 cosx11 − cosx7 sinx11 sinx9)uT

m

− λ4
(cosx7 sinx9 cosx11 + sinx11 sinx7)uT

m

λ̇12 = −λ11 −
Iy − Iz

Iy
λ8x10 −

Iz − Ix
Iy

λ10x8 (13)

Furthermore, the dynamics of the adjoint process for
sailing mode in t ∈ [ts, tf ] is written as

λ̇1 = 0

λ̇2 = −λ1 + λ2γ1x2

λ̇3 = 0

λ̇4 = −λ3 + λ4γ1x4

λ̇5 = −λ2
(cosx5 sinx9 − sinx5 cosx9 sinx7)uT

m

− λ4
(− sinx5 sinx7 sinx9 − cosx9 cosx5)uT

m

λ̇6 = −λ5 −
Iz − Ix

Iy
λ8x10 −

Ix − Iy
Iz

λ10x8

λ̇7 = −λ2
(cosx5 cosx9 cosx7)uT

m

− λ4
(cosx5 cosx7 sinx9)uT

m

λ̇8 = −λ7 −
Iy − Iz

Ix
λ6x10 −

Ix − Iy
Iz
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λ̇9 = −λ2
(sinx5 cosx9 − cosx5 sinx9 sinx7)uT

m

− λ4
(cosx5 sinx7 cosx9 + sinx9 sinx5)uT

m

λ̇10 = −λ11 −
Iy − Iz

Iy
λ6x8 −

Iz − Ix
Iy

λ8x6 (14)

The boundary conditions for λ are determined from

λq1(ts) = ∇ξq1q2 |
⊤
xq1 (ts−) λq2(ts+) + p ∇m|xq1 (ts−) (15)

4. THE MINIMUM TIME PROBLEM

4.1 Flying mode

The Hamiltonian for flying mode is written as

Hq1 = ℓq1 + λ⊤
q1fq1 = 1 + λ1x2 + λ7x8 + λ9x10 + λ11x12

− λ2
(sinx7 sinx11 + cosx7 cosx11 sinx9)uT

m
+ λ3x4

− λ4
(cosx7 sinx9 sinx11 − cosx11 sinx7)uT

m
+ λ5x6

+λ6


g− (cosx7 cosx9)uT

m


+λ8

Iy − Iz
Ix

x10x12+
1

Ix
ux



+λ10

Iz − Ix
Iy

x8x12+
1

Iy
uy


+λ12

Ix − Iy
Iz

x8x10+
1

Iz
uz



(16)

The Hamiltonian minimization for the Hamiltonian (16)
yields the optimal values u∗

x, u
∗
y, u

∗
z and u∗

T , where for the
input ux we obtain

u∗
x = argmin

ux∈[−1,+1]

{λ8ux} (17)

which takes the values −1 and +1 whenever λ8 is, respec-
tively, strictly positive and strictly negative. Hence, the
control input u∗

x for time-optimal is given by

u∗
x =



+1 if λ8 < 0

0 if λ8 = 0

−1 if λ8 > 0

(18)

Similarly, for control inputs uy we obtain

u∗
y =



+1 if λ10 < 0

0 if λ10 = 0

−1 if λ10 > 0

(19)

and for control inputs uz, we obtain

u∗
z =



+1 if λ12 < 0

0 if λ12 = 0

−1 if λ12 > 0

(20)

Moreover, the control input uT is obtained as

u∗
T = argmin

uT∈[−10,+10]


λ2

sinx7 sinx11 + cosx7 cosx11 sinx9

m
uT

+ λ4
cosx7 sinx9 sinx11 − cosx11 sinx7

m
uT

+ λ6
cosx7 cosx9

m
uT


(21)

where the optimal input of u∗
T for flying mode, which

depends on the sign of ∆ = λ2
sin x7 sin x11+cos x7 cos x11 sin x9

m

+ λ4
cos x7 sin x9 sin x11−cos x11 sin x7

m + λ6
cos x7 cos x9

m , is deter-
mined by

u∗
T =


+10 if ∆ ≤ 0

−10 if ∆ > 0
(22)

It is worth mentioning that the control input u∗
T does not

contain singular arcs, see, e.g., (Hehn et al., 2012, Section
3.1.2).

4.2 Sailing mode

The Hamiltonian for sailing mode is written as

Hq2 = ℓq2 + λ⊤
q2fq2 = 1 + λ1x2 − λ2γ1x

2
2 + λ3x4

− λ2
(sinx5 sinx9 + cosx5 cosx9 sinx7)uT

m
− λ4γ2x

2
4

− λ4
(cosx5 sinx7 sinx9 − cosx9 sinx5)uT

m
+ λ7x8

+ λ6


Iy − Iz

Ix
x8x10 +

1

Ix
ux


+ λ5x6 + λ9x10

+λ8


Iz − Ix

Iy
x6x10 +

1

Iy
uy


+λ10


Ix − Iy

Iz
x6x8 +

1

Iz
uz



(23)

Similar to section 4.1 for control input ux we obtain

u∗
x = argmin

ux∈[−1,+1]

{λ6ux} (24)

which takes the values −1 and +1 whenever λ6 is, respec-
tively, strictly positive and strictly negative. Hence, the
control input u∗

x for time-optimal is given by

u∗
x =



+1 if λ6 < 0

0 if λ6 = 0

−1 if λ6 > 0

(25)

Similarly, for control inputs uy we obtain

u∗
y =



+1 if λ8 < 0

0 if λ8 = 0

−1 if λ8 > 0

(26)

and for control inputs uz, we obtain

u∗
z =



+1 if λ10 < 0

0 if λ10 = 0

−1 if λ10 > 0

(27)

In addition, the control input uT is obtained as

u∗
T = argmin

uT∈[−10,+10]


λ2

sinx5 sinx9 + cosx5 cosx9 sinx7

m
uT

+ λ4
cosx5 sinx7 sinx9 − cosx9 sinx5

m
uT


(28)

Hence, the optimal input u∗
T for sailing mode depends on

sign of Γ = λ2
sin x5 sin x9+cos x5 cos x9 sin x7

m

+ λ4
cos x5 sin x7 sin x9−cos x9 sin x5

m , is given by

u∗
T =


+10 if Γ ≤ 0

−10 if Γ > 0
(29)

5. NUMERICAL SIMULATION

We consider the values in Table 1 for the drone parameters
with xq1(t0) = [0, 1, 0, 0, 10, 0.1, 0, 0, 0, 0, 1.5, 0]⊤ as the
initial condition in the flying mode, and a fixed terminal
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λ̇9 = −λ2
(sinx5 cosx9 − cosx5 sinx9 sinx7)uT

m

− λ4
(cosx5 sinx7 cosx9 + sinx9 sinx5)uT

m

λ̇10 = −λ11 −
Iy − Iz

Iy
λ6x8 −

Iz − Ix
Iy

λ8x6 (14)

The boundary conditions for λ are determined from

λq1(ts) = ∇ξq1q2 |
⊤
xq1 (ts−) λq2(ts+) + p ∇m|xq1 (ts−) (15)

4. THE MINIMUM TIME PROBLEM

4.1 Flying mode

The Hamiltonian for flying mode is written as

Hq1 = ℓq1 + λ⊤
q1fq1 = 1 + λ1x2 + λ7x8 + λ9x10 + λ11x12

− λ2
(sinx7 sinx11 + cosx7 cosx11 sinx9)uT

m
+ λ3x4

− λ4
(cosx7 sinx9 sinx11 − cosx11 sinx7)uT

m
+ λ5x6

+λ6


g− (cosx7 cosx9)uT

m


+λ8

Iy − Iz
Ix

x10x12+
1

Ix
ux



+λ10

Iz − Ix
Iy

x8x12+
1

Iy
uy


+λ12

Ix − Iy
Iz

x8x10+
1

Iz
uz



(16)

The Hamiltonian minimization for the Hamiltonian (16)
yields the optimal values u∗

x, u
∗
y, u

∗
z and u∗

T , where for the
input ux we obtain

u∗
x = argmin

ux∈[−1,+1]

{λ8ux} (17)

which takes the values −1 and +1 whenever λ8 is, respec-
tively, strictly positive and strictly negative. Hence, the
control input u∗

x for time-optimal is given by

u∗
x =



+1 if λ8 < 0

0 if λ8 = 0

−1 if λ8 > 0

(18)

Similarly, for control inputs uy we obtain

u∗
y =



+1 if λ10 < 0

0 if λ10 = 0

−1 if λ10 > 0

(19)

and for control inputs uz, we obtain

u∗
z =



+1 if λ12 < 0

0 if λ12 = 0

−1 if λ12 > 0

(20)

Moreover, the control input uT is obtained as

u∗
T = argmin

uT∈[−10,+10]


λ2

sinx7 sinx11 + cosx7 cosx11 sinx9

m
uT

+ λ4
cosx7 sinx9 sinx11 − cosx11 sinx7

m
uT

+ λ6
cosx7 cosx9

m
uT


(21)

where the optimal input of u∗
T for flying mode, which

depends on the sign of ∆ = λ2
sin x7 sin x11+cos x7 cos x11 sin x9

m

+ λ4
cos x7 sin x9 sin x11−cos x11 sin x7

m + λ6
cos x7 cos x9

m , is deter-
mined by

u∗
T =


+10 if ∆ ≤ 0

−10 if ∆ > 0
(22)

It is worth mentioning that the control input u∗
T does not

contain singular arcs, see, e.g., (Hehn et al., 2012, Section
3.1.2).

4.2 Sailing mode

The Hamiltonian for sailing mode is written as

Hq2 = ℓq2 + λ⊤
q2fq2 = 1 + λ1x2 − λ2γ1x

2
2 + λ3x4

− λ2
(sinx5 sinx9 + cosx5 cosx9 sinx7)uT

m
− λ4γ2x

2
4

− λ4
(cosx5 sinx7 sinx9 − cosx9 sinx5)uT

m
+ λ7x8

+ λ6


Iy − Iz

Ix
x8x10 +

1

Ix
ux


+ λ5x6 + λ9x10

+λ8


Iz − Ix

Iy
x6x10 +

1

Iy
uy


+λ10


Ix − Iy

Iz
x6x8 +

1

Iz
uz



(23)

Similar to section 4.1 for control input ux we obtain

u∗
x = argmin

ux∈[−1,+1]

{λ6ux} (24)

which takes the values −1 and +1 whenever λ6 is, respec-
tively, strictly positive and strictly negative. Hence, the
control input u∗

x for time-optimal is given by

u∗
x =



+1 if λ6 < 0

0 if λ6 = 0

−1 if λ6 > 0

(25)

Similarly, for control inputs uy we obtain

u∗
y =



+1 if λ8 < 0

0 if λ8 = 0

−1 if λ8 > 0

(26)

and for control inputs uz, we obtain

u∗
z =



+1 if λ10 < 0

0 if λ10 = 0

−1 if λ10 > 0

(27)

In addition, the control input uT is obtained as

u∗
T = argmin

uT∈[−10,+10]


λ2

sinx5 sinx9 + cosx5 cosx9 sinx7

m
uT

+ λ4
cosx5 sinx7 sinx9 − cosx9 sinx5

m
uT


(28)

Hence, the optimal input u∗
T for sailing mode depends on

sign of Γ = λ2
sin x5 sin x9+cos x5 cos x9 sin x7

m

+ λ4
cos x5 sin x7 sin x9−cos x9 sin x5

m , is given by

u∗
T =


+10 if Γ ≤ 0

−10 if Γ > 0
(29)

5. NUMERICAL SIMULATION

We consider the values in Table 1 for the drone parameters
with xq1(t0) = [0, 1, 0, 0, 10, 0.1, 0, 0, 0, 0, 1.5, 0]⊤ as the
initial condition in the flying mode, and a fixed terminal
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Fig. 2. The optimal trajectory (including positions, veloc-
ities, angles, angular velocities), the optimal inputs,
the corresponding adjoint processes and Hamiltonians
corresponding to the minimum control effort problem.
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Fig. 3. The optimal trajectory (including positions, veloc-
ities, angles, angular velocities), the optimal inputs,
the corresponding adjoint processes and Hamiltonians
corresponding to the minimum time problem.
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Fig. 4. The comparison of trajectories and switching times
of the flying+sailing drone with optimal time (green)
and optimal control effort (red).

Table 1. Values of the drone parameters
(Sabatino, 2015).

Parameter Value Unit

m 0.5 kg
Ix 0.0034 Nms2

Iy 0.0034 Nms2

Iz 0.006 Nms2

g 9.81 m
s2

condition xq2(tf ) = [20, 0, 10, 0, 0, 0, 0, 0, 0, 0, 0, 0]⊤ on the
water surface. We take δ = 25 degrees for the instanta-
neous change in the pitch angle at the switching instance.

The results of the optimal control effort problem includ-
ing states, adjoints, and Hamiltonians for the minimiza-
tion of control effort throughout [t0, tf ] = [0, 20] are
shown in Fig. 2. In this scenario, the optimal autonomous
switching between flying and sailing modes occurs at
ts = 11.1s at the optimal switching state xq1(ts−) =

[12.13, 1.91, 3.62, 0.91, 0, 0.67, 0.02, 0.01, 0, 0.26, -.97, 0]⊤.

The results for the time-optimal problem are shown
in Fig. 3. The minimum terminal time is obtained as tf =
17.71s and the optimal switching time is ts = 8.81s. In this
solution, the optimal states at the switching instant are
xq1 (ts−) = [11.61, 1.9, 5.35, 0.9, 0, 0.54,−0.07,−0.06, 0, 0, 0.52, 0.13]⊤.

The 3-D schematic view of a flying+sailing drone for
optimal time and control effort problems is shown in Fig. 4.

6. CONCLUDING REMARKS

This paper presents a hybrid systems formulation of a
robotic system capable of flying with 6-DoF and sailing
with 5-DoF. The presented necessary optimality condi-
tions of the HMP and the associated HMP–MAS algorithm
for numerical simulations are powerful tools in providing
solutions to the associated hybrid optimal control prob-
lems both for the minimization of time and the mini-
mization of the control effort for the multi-modal robotic
system. It shall be remarked, however, that due to the non-
linear nature of the drone dynamics, numerical solutions
are sensitive to the initial guess, especially for the state
components x7 ≡ ϕ, x9 ≡ θ, x11 ≡ ψ.

Future research directions include the accommodation
of obstacle avoidance in the controller synthesis as well
as the consideration of scenarios requiring a multiplicity
of switchings. Another line of future work includes the
implementation of these theoretical results on an actual
flying+sailing drone as well as testing the multi-modal
robotic system in real environments. An essential step in
the practical implementation of the results is to establish
separate hybrid modes for the transitioning of the drone
from flying to sailing and vice versa based on the dynamics
behavior of the corresponding robotic system.
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