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1. INTRODUCTION

Linear Quadratic (LQ) problems constitute an extremely im-
portant class of optimal control problems, since they can model
many problems in applications, and more importantly, many
nonlinear control problems can be reasonably approximated by
the LQ problems. Moreover, solutions of LQ problems exhibit
elegant properties due to their simple and nice structures. For
deterministic linear quadratic optimal control problems, one
can employ the elementary method of completion of squares
and obtain an optimal control in a linear state feedback form via
the so-called Riccati equation (see e.g. Yong and Zhou (1999)).
Along this line, the solvability of the Riccati equation leads
to that of the LQ problem. It is interesting to note that both
the Minimum Principle (MP) by Pontryagin et al. (1962) and
Dynamic Programming (DP) by Bellman (1966) can lead to
the Riccati equation, by which one can see more clearly the
relationship between MP and DP.

For stochastic LQ problems, which are also called Linear
Quadratic Gaussian (LQG) problems, the method of comple-
tion of squares, the Stochastic Minimum Principle (SMP), and
Stochastic Dynamic Programming (SDP) all give rise to a
stochastic Riccati equation (see e.g. Yong and Zhou (1999)).
This equation is quite different from the conventional Riccati
equation arising in the deterministic LQ problems. One of the
main differences between the stochastic differential equations
appearing in stochastic optimal control problems and determin-
istic differential equations for deterministic problems is that
“time” cannot be reversed and solvability is interpreted as the
existence of solutions adapted solely to the forward filtration
(see e.g. Ma and Yong (1999)). This requires the introduction of
a notion of forward-backward stochastic differential equations
(FBSDE), first presented by Bismut (1978), and then elabo-
rated more in the optimal control framework by Bensoussan
(1983), Pardoux and Peng (1990), etc., and in the general
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theory of forward-backward stochastic differential equations
by Antonelli, Ma, Protter, Yong, Hu, and Peng (see e.g. Ma
and Yong (1999) and references therein). Stochastic Dynamic
Programming (SDP) including the Stochastic Hamilton-Jacobi-
Bellman (SHJB) equation are presented by Kushner (1962),
Krylov (2008), Fleming and Soner (2006), Fleming and Rishel
(1975), Yong and Zhou (1999), and others. Versions of the
Stochastic Minimum Principle (SMP) are presented by Kushner
(1972); Kushner and Schweppe (1964), Haussmann (1986),
Bismut (1978), Bensoussan (1982), and Peng (1990). It has
been shown using both the SMP and SDP that a stochastic LQ
problem is well-posed if there are solutions to the stochastic
Riccati equation, and an optimal feedback control can then
be obtained via these solutions. Although the stochastic LQ
problem can be reduced to that of solving the stochastic Ric-
cati equation, the existence and uniqueness of the solutions to
the stochastic Riccati equation are generally available only for
certain special cases (see e.g. Yong and Zhou (1999)).

The optimal control of stochastic hybrid systems, i.e. control
systems that involve the interaction of continuous dynamics,
discrete dynamics and stochastic diffusions, has been the sub-
ject of a limited number of studies. Versions of non-classical
stochastic optimal control problems have been studied by Wu
and Zhang (2011), Shi and Wu (2010a,b), etc. but the class of
problems addressed lack many of the key features of hybrid
systems, most notably changes in dynamics and costs. In the
context of Stochastic Hybrid Dynamic Programming (SHDP),
Bensoussan and Menaldi (2000) presents the optimality con-
ditions for infinite horizon problems where optimal controls
are stationary. In the context of the Stochastic Hybrid Hybrid
Minimum Principle (SHMP) Aghayeva and Abushov (2011)
presented the optimality conditions for controlled switchings
only, and Pakniyat and Caines (2016b) presented the SHMP for
a general class of stochastic hybrid systems where autonomous
and controlled state jumps at switching instants are allowed
to be accompanied by changes in the dimension of the state
space. A feature of special interest in this work is the effect of

Proceedings of the 20th World Congress
The International Federation of Automatic Control
Toulouse, France, July 9-14, 2017

Copyright © 2017 IFAC 2241

A Class of Linear Quadratic Gaussian
Hybrid Optimal Control Problems with

Realization–Independent Riccati Equations

Ali Pakniyat ∗ Peter E. Caines ∗

∗ Centre for Intelligent Machines (CIM) and the Department of Electrical and
Computer Engineering (ECE), McGill University

E-mails: pakniyat@cim.mcgill.ca, peterc@cim.mcgill.ca

Abstract: A class of stochastic linear quadratic hybrid optimal control problems is presented for which
the Hamiltonian boundary conditions appearing in the associated necessary optimality conditions of
the Stochastic Hybrid Minimum Principle and Stochastic Hybrid Dynamic Programming are path-
independent. Consequently, the linear quadratic Gaussian regulation problem associated with this class
of stochastic hybrid optimal control problems can be solved via (stochastic) Riccati equations which
are independent of the realization of stochastic diffusion terms. An analytic example of a scalar hybrid
system is provided to illustrate the results, and the relation to the deterministic case is discussed.

Keywords: Hybrid Systems, Stochastic Control, Linear Quadratic Gaussian, Optimal Control

1. INTRODUCTION

Linear Quadratic (LQ) problems constitute an extremely im-
portant class of optimal control problems, since they can model
many problems in applications, and more importantly, many
nonlinear control problems can be reasonably approximated by
the LQ problems. Moreover, solutions of LQ problems exhibit
elegant properties due to their simple and nice structures. For
deterministic linear quadratic optimal control problems, one
can employ the elementary method of completion of squares
and obtain an optimal control in a linear state feedback form via
the so-called Riccati equation (see e.g. Yong and Zhou (1999)).
Along this line, the solvability of the Riccati equation leads
to that of the LQ problem. It is interesting to note that both
the Minimum Principle (MP) by Pontryagin et al. (1962) and
Dynamic Programming (DP) by Bellman (1966) can lead to
the Riccati equation, by which one can see more clearly the
relationship between MP and DP.

For stochastic LQ problems, which are also called Linear
Quadratic Gaussian (LQG) problems, the method of comple-
tion of squares, the Stochastic Minimum Principle (SMP), and
Stochastic Dynamic Programming (SDP) all give rise to a
stochastic Riccati equation (see e.g. Yong and Zhou (1999)).
This equation is quite different from the conventional Riccati
equation arising in the deterministic LQ problems. One of the
main differences between the stochastic differential equations
appearing in stochastic optimal control problems and determin-
istic differential equations for deterministic problems is that
“time” cannot be reversed and solvability is interpreted as the
existence of solutions adapted solely to the forward filtration
(see e.g. Ma and Yong (1999)). This requires the introduction of
a notion of forward-backward stochastic differential equations
(FBSDE), first presented by Bismut (1978), and then elabo-
rated more in the optimal control framework by Bensoussan
(1983), Pardoux and Peng (1990), etc., and in the general
� This work is supported by the Natural Sciences and Engineering Research
Council of Canada (NSERC) and the Automotive Partnership Canada (APC).

theory of forward-backward stochastic differential equations
by Antonelli, Ma, Protter, Yong, Hu, and Peng (see e.g. Ma
and Yong (1999) and references therein). Stochastic Dynamic
Programming (SDP) including the Stochastic Hamilton-Jacobi-
Bellman (SHJB) equation are presented by Kushner (1962),
Krylov (2008), Fleming and Soner (2006), Fleming and Rishel
(1975), Yong and Zhou (1999), and others. Versions of the
Stochastic Minimum Principle (SMP) are presented by Kushner
(1972); Kushner and Schweppe (1964), Haussmann (1986),
Bismut (1978), Bensoussan (1982), and Peng (1990). It has
been shown using both the SMP and SDP that a stochastic LQ
problem is well-posed if there are solutions to the stochastic
Riccati equation, and an optimal feedback control can then
be obtained via these solutions. Although the stochastic LQ
problem can be reduced to that of solving the stochastic Ric-
cati equation, the existence and uniqueness of the solutions to
the stochastic Riccati equation are generally available only for
certain special cases (see e.g. Yong and Zhou (1999)).

The optimal control of stochastic hybrid systems, i.e. control
systems that involve the interaction of continuous dynamics,
discrete dynamics and stochastic diffusions, has been the sub-
ject of a limited number of studies. Versions of non-classical
stochastic optimal control problems have been studied by Wu
and Zhang (2011), Shi and Wu (2010a,b), etc. but the class of
problems addressed lack many of the key features of hybrid
systems, most notably changes in dynamics and costs. In the
context of Stochastic Hybrid Dynamic Programming (SHDP),
Bensoussan and Menaldi (2000) presents the optimality con-
ditions for infinite horizon problems where optimal controls
are stationary. In the context of the Stochastic Hybrid Hybrid
Minimum Principle (SHMP) Aghayeva and Abushov (2011)
presented the optimality conditions for controlled switchings
only, and Pakniyat and Caines (2016b) presented the SHMP for
a general class of stochastic hybrid systems where autonomous
and controlled state jumps at switching instants are allowed
to be accompanied by changes in the dimension of the state
space. A feature of special interest in this work is the effect of

Proceedings of the 20th World Congress
The International Federation of Automatic Control
Toulouse, France, July 9-14, 2017

Copyright © 2017 IFAC 2241

A Class of Linear Quadratic Gaussian
Hybrid Optimal Control Problems with

Realization–Independent Riccati Equations

Ali Pakniyat ∗ Peter E. Caines ∗

∗ Centre for Intelligent Machines (CIM) and the Department of Electrical and
Computer Engineering (ECE), McGill University

E-mails: pakniyat@cim.mcgill.ca, peterc@cim.mcgill.ca

Abstract: A class of stochastic linear quadratic hybrid optimal control problems is presented for which
the Hamiltonian boundary conditions appearing in the associated necessary optimality conditions of
the Stochastic Hybrid Minimum Principle and Stochastic Hybrid Dynamic Programming are path-
independent. Consequently, the linear quadratic Gaussian regulation problem associated with this class
of stochastic hybrid optimal control problems can be solved via (stochastic) Riccati equations which
are independent of the realization of stochastic diffusion terms. An analytic example of a scalar hybrid
system is provided to illustrate the results, and the relation to the deterministic case is discussed.

Keywords: Hybrid Systems, Stochastic Control, Linear Quadratic Gaussian, Optimal Control

1. INTRODUCTION

Linear Quadratic (LQ) problems constitute an extremely im-
portant class of optimal control problems, since they can model
many problems in applications, and more importantly, many
nonlinear control problems can be reasonably approximated by
the LQ problems. Moreover, solutions of LQ problems exhibit
elegant properties due to their simple and nice structures. For
deterministic linear quadratic optimal control problems, one
can employ the elementary method of completion of squares
and obtain an optimal control in a linear state feedback form via
the so-called Riccati equation (see e.g. Yong and Zhou (1999)).
Along this line, the solvability of the Riccati equation leads
to that of the LQ problem. It is interesting to note that both
the Minimum Principle (MP) by Pontryagin et al. (1962) and
Dynamic Programming (DP) by Bellman (1966) can lead to
the Riccati equation, by which one can see more clearly the
relationship between MP and DP.

For stochastic LQ problems, which are also called Linear
Quadratic Gaussian (LQG) problems, the method of comple-
tion of squares, the Stochastic Minimum Principle (SMP), and
Stochastic Dynamic Programming (SDP) all give rise to a
stochastic Riccati equation (see e.g. Yong and Zhou (1999)).
This equation is quite different from the conventional Riccati
equation arising in the deterministic LQ problems. One of the
main differences between the stochastic differential equations
appearing in stochastic optimal control problems and determin-
istic differential equations for deterministic problems is that
“time” cannot be reversed and solvability is interpreted as the
existence of solutions adapted solely to the forward filtration
(see e.g. Ma and Yong (1999)). This requires the introduction of
a notion of forward-backward stochastic differential equations
(FBSDE), first presented by Bismut (1978), and then elabo-
rated more in the optimal control framework by Bensoussan
(1983), Pardoux and Peng (1990), etc., and in the general
� This work is supported by the Natural Sciences and Engineering Research
Council of Canada (NSERC) and the Automotive Partnership Canada (APC).

theory of forward-backward stochastic differential equations
by Antonelli, Ma, Protter, Yong, Hu, and Peng (see e.g. Ma
and Yong (1999) and references therein). Stochastic Dynamic
Programming (SDP) including the Stochastic Hamilton-Jacobi-
Bellman (SHJB) equation are presented by Kushner (1962),
Krylov (2008), Fleming and Soner (2006), Fleming and Rishel
(1975), Yong and Zhou (1999), and others. Versions of the
Stochastic Minimum Principle (SMP) are presented by Kushner
(1972); Kushner and Schweppe (1964), Haussmann (1986),
Bismut (1978), Bensoussan (1982), and Peng (1990). It has
been shown using both the SMP and SDP that a stochastic LQ
problem is well-posed if there are solutions to the stochastic
Riccati equation, and an optimal feedback control can then
be obtained via these solutions. Although the stochastic LQ
problem can be reduced to that of solving the stochastic Ric-
cati equation, the existence and uniqueness of the solutions to
the stochastic Riccati equation are generally available only for
certain special cases (see e.g. Yong and Zhou (1999)).

The optimal control of stochastic hybrid systems, i.e. control
systems that involve the interaction of continuous dynamics,
discrete dynamics and stochastic diffusions, has been the sub-
ject of a limited number of studies. Versions of non-classical
stochastic optimal control problems have been studied by Wu
and Zhang (2011), Shi and Wu (2010a,b), etc. but the class of
problems addressed lack many of the key features of hybrid
systems, most notably changes in dynamics and costs. In the
context of Stochastic Hybrid Dynamic Programming (SHDP),
Bensoussan and Menaldi (2000) presents the optimality con-
ditions for infinite horizon problems where optimal controls
are stationary. In the context of the Stochastic Hybrid Hybrid
Minimum Principle (SHMP) Aghayeva and Abushov (2011)
presented the optimality conditions for controlled switchings
only, and Pakniyat and Caines (2016b) presented the SHMP for
a general class of stochastic hybrid systems where autonomous
and controlled state jumps at switching instants are allowed
to be accompanied by changes in the dimension of the state
space. A feature of special interest in this work is the effect of

Proceedings of the 20th World Congress
The International Federation of Automatic Control
Toulouse, France, July 9-14, 2017

Copyright © 2017 IFAC 2241

A Class of Linear Quadratic Gaussian
Hybrid Optimal Control Problems with

Realization–Independent Riccati Equations

Ali Pakniyat ∗ Peter E. Caines ∗

∗ Centre for Intelligent Machines (CIM) and the Department of Electrical and
Computer Engineering (ECE), McGill University

E-mails: pakniyat@cim.mcgill.ca, peterc@cim.mcgill.ca

Abstract: A class of stochastic linear quadratic hybrid optimal control problems is presented for which
the Hamiltonian boundary conditions appearing in the associated necessary optimality conditions of
the Stochastic Hybrid Minimum Principle and Stochastic Hybrid Dynamic Programming are path-
independent. Consequently, the linear quadratic Gaussian regulation problem associated with this class
of stochastic hybrid optimal control problems can be solved via (stochastic) Riccati equations which
are independent of the realization of stochastic diffusion terms. An analytic example of a scalar hybrid
system is provided to illustrate the results, and the relation to the deterministic case is discussed.

Keywords: Hybrid Systems, Stochastic Control, Linear Quadratic Gaussian, Optimal Control

1. INTRODUCTION

Linear Quadratic (LQ) problems constitute an extremely im-
portant class of optimal control problems, since they can model
many problems in applications, and more importantly, many
nonlinear control problems can be reasonably approximated by
the LQ problems. Moreover, solutions of LQ problems exhibit
elegant properties due to their simple and nice structures. For
deterministic linear quadratic optimal control problems, one
can employ the elementary method of completion of squares
and obtain an optimal control in a linear state feedback form via
the so-called Riccati equation (see e.g. Yong and Zhou (1999)).
Along this line, the solvability of the Riccati equation leads
to that of the LQ problem. It is interesting to note that both
the Minimum Principle (MP) by Pontryagin et al. (1962) and
Dynamic Programming (DP) by Bellman (1966) can lead to
the Riccati equation, by which one can see more clearly the
relationship between MP and DP.

For stochastic LQ problems, which are also called Linear
Quadratic Gaussian (LQG) problems, the method of comple-
tion of squares, the Stochastic Minimum Principle (SMP), and
Stochastic Dynamic Programming (SDP) all give rise to a
stochastic Riccati equation (see e.g. Yong and Zhou (1999)).
This equation is quite different from the conventional Riccati
equation arising in the deterministic LQ problems. One of the
main differences between the stochastic differential equations
appearing in stochastic optimal control problems and determin-
istic differential equations for deterministic problems is that
“time” cannot be reversed and solvability is interpreted as the
existence of solutions adapted solely to the forward filtration
(see e.g. Ma and Yong (1999)). This requires the introduction of
a notion of forward-backward stochastic differential equations
(FBSDE), first presented by Bismut (1978), and then elabo-
rated more in the optimal control framework by Bensoussan
(1983), Pardoux and Peng (1990), etc., and in the general
� This work is supported by the Natural Sciences and Engineering Research
Council of Canada (NSERC) and the Automotive Partnership Canada (APC).

theory of forward-backward stochastic differential equations
by Antonelli, Ma, Protter, Yong, Hu, and Peng (see e.g. Ma
and Yong (1999) and references therein). Stochastic Dynamic
Programming (SDP) including the Stochastic Hamilton-Jacobi-
Bellman (SHJB) equation are presented by Kushner (1962),
Krylov (2008), Fleming and Soner (2006), Fleming and Rishel
(1975), Yong and Zhou (1999), and others. Versions of the
Stochastic Minimum Principle (SMP) are presented by Kushner
(1972); Kushner and Schweppe (1964), Haussmann (1986),
Bismut (1978), Bensoussan (1982), and Peng (1990). It has
been shown using both the SMP and SDP that a stochastic LQ
problem is well-posed if there are solutions to the stochastic
Riccati equation, and an optimal feedback control can then
be obtained via these solutions. Although the stochastic LQ
problem can be reduced to that of solving the stochastic Ric-
cati equation, the existence and uniqueness of the solutions to
the stochastic Riccati equation are generally available only for
certain special cases (see e.g. Yong and Zhou (1999)).

The optimal control of stochastic hybrid systems, i.e. control
systems that involve the interaction of continuous dynamics,
discrete dynamics and stochastic diffusions, has been the sub-
ject of a limited number of studies. Versions of non-classical
stochastic optimal control problems have been studied by Wu
and Zhang (2011), Shi and Wu (2010a,b), etc. but the class of
problems addressed lack many of the key features of hybrid
systems, most notably changes in dynamics and costs. In the
context of Stochastic Hybrid Dynamic Programming (SHDP),
Bensoussan and Menaldi (2000) presents the optimality con-
ditions for infinite horizon problems where optimal controls
are stationary. In the context of the Stochastic Hybrid Hybrid
Minimum Principle (SHMP) Aghayeva and Abushov (2011)
presented the optimality conditions for controlled switchings
only, and Pakniyat and Caines (2016b) presented the SHMP for
a general class of stochastic hybrid systems where autonomous
and controlled state jumps at switching instants are allowed
to be accompanied by changes in the dimension of the state
space. A feature of special interest in this work is the effect of

Proceedings of the 20th World Congress
The International Federation of Automatic Control
Toulouse, France, July 9-14, 2017

Copyright © 2017 IFAC 2241



2206	 Ali Pakniyat  et al. / IFAC PapersOnLine 50-1 (2017) 2205–2210

hard constraints imposed by switching manifolds on diffusion-
driven state trajectories.

In contrast to the stochastic case, the optimal control of de-
terministic hybrid systems has been the subject of numerous
studies. The generalization of the fundamental Pontryagin Min-
imum Principle (PMP) results in the Hybrid Minimum Princi-
ple (HMP). The formulation by Clarke and Vinter (1989a,b),
referred to by them as “Optimal Multiprocesses”, provides a
Minimum Principle for hybrid systems of a very general nature
in which switching conditions are regarded as constraints in the
form of set inclusions and the dynamics of the constituent pro-
cesses are governed by (possibly nonsmooth) differential inclu-
sions. A similar philosophy is followed by Sussmann (1999a,b)
where a nonsmooth Minimum Principle is presented for hybrid
systems possessing a general class of switching structures. Due
to the generality of the results by Clarke and Vinter (1989a,b);
Sussmann (1999a,b), degeneracy is not precluded and there-
fore, additional hypotheses need to be imposed to make the
HMP results significantly informative (see e.g. Caines et al.
(2006) for more discussion); such hypotheses (typically of a
controllability nature) are usually too restrictive to cover many
practical problems of engineering interest. An alternative phi-
losophy, followed by Shaikh and Caines (2007), Garavello and
Piccoli (2005), Taringoo and Caines (2011, 2013), and Pakniyat
and Caines (2017b) is to ensure the validity of the HMP in
a non-degenerate form by introducing hypotheses on the dy-
namics, transitions and switching events. To name a few other
versions of the HMP in its appearances within the development
of optimal control theory one cites the work of Lygeros et al.
(1997), Riedinger et al. (1999), Xu and Antsaklis (2004), Azh-
myakov et al. (2008), and Dmitruk and Kaganovich (2008).

The generalization of the method of Dynamic Programming
for hybrid systems results in the theory of Hybrid Dynamic
Programming (HDP). Infinite horizon - HDP formulations
have been given by Bensoussan and Menaldi (1997), Branicky
et al. (1998), Barles et al. (2010); Dharmatti and Ramaswamy
(2005), as well as finite horizon HDP formulations appearing
in the work of Hedlund and Rantzer (2002), Caines et al.
(2007); Schöllig et al. (2007) and Shaikh and Caines (2009),
to name but few of the major publications on the theory of
HDP. The equivalence of the Hybrid Minimum Principle and
Hybrid Dynamic Programming is established in Pakniyat and
Caines (2014b, 2017b) by showing that under certain technical
assumptions the adjoint process in the HMP and the gradient
of the value function in HDP are governed by the same set of
differential equations and have the same boundary conditions
and hence are almost everywhere identical to each other along
optimal trajectories.

In Pakniyat and Caines (2016b) the deterministic framework
established in Pakniyat and Caines (2013, 2014a,b, 2017a,b) is
extended in order to cover a general class of stochastic hybrid
systems with state dependant diffusion fields which are subject
to a large range of autonomous and controlled switchings and
state jumps. First order variational analysis is performed on
the stochastic hybrid optimal control problem via the needle
variation methodology and the necessary optimality conditions
are established in the form of the Stochastic Hybrid Minimum
Principle (SHMP). In the absence of stochastic diffusions, it
has been discussed in Pakniyat and Caines (2017b) that Riccati
equations derived from the HMP and HDP for Linear Quadratic
Hybrid Optimal Control Problems (LQ-HOCP) are, in general,
path-dependent. This is due to the path-dependence of Hamil-

tonian boundary conditions appearing in the associated neces-
sary conditions of the HMP and HDP. Subsequently, stochas-
tic Riccati equations derived for Linear Quadratic Gaussian
Hybrid Optimal Control Problems (LQG-HOCP) are generally
realization-dependent as the necessary optimality conditions of
the SHMP and Stochastic HDP (SHDP), including the Hamilto-
nian boundary conditions, generalize those in the deterministic
case (see Pakniyat and Caines (2016b) and Pakniyat (2016) for
more discussion).

In this paper, a class of Linear Quadratic Gaussian Hybrid Op-
timal Control Problems (LQG-HOCP) is presented for which
the Hamiltonian boundary conditions are path-independent and
therefore, the corresponding stochastic Riccati equations are
independent from the realization of stochastic diffusion terms.
An analytic example is provided to illustrate the results, and the
relation to the deterministic case is discussed.

2. A CLASS OF LINEAR QUADRATIC GAUSSIAN
HYBRID OPTIMAL CONTROL PROBLEMS

Let (Ω,ℑ,P) be a probability space with filtration ℑt , and w(�)
be a standard Wiener process. Consider a class of LQG-HOCP
with completely observed states, i.e. ℑt = σ {w(s) : 0 ≤ s ≤ t},
which is the natural filtration associated with the sigma-algebra
generated by the Wiener process.

Consider a hybrid system possessing linear vector fields in the
form of

dxqi = (Aqixqi +Bqiuqi)dt +Gqidw, t ∈ [ti, ti+1) , (1)
where qi ∈ Q, xqi ∈ Rnqi , uqi ∈ Rmqi , Aqi ∈ Rnqi×nqi , Bqi ∈
Rnqi×mqi , Gqi ∈Rnqi , 0 ≤ i ≤ L, tL+1 := t f . The initial condition
(q,x)(t0) = (q0,x0) is assumed to be deterministically known at
the initial time t0. In this paper, we only consider prearranged
controlled switchings, which result in a fixed sequence of
discrete states q1,q2, · · · ,qL, and at the switching instances
t j,1 ≤ j ≤ L, which are decision variables, i.e. not a priori
determined, the state jump maps are provided as

xq j (t j) = Ψσ j xq j−1 (t j−)≡ Ψq j−1q j xq j−1 (t j−) . (2)

Consider the LQG-HOCP for the hybrid cost

J =
1
2
E




L

∑
i=0

ti+1∫

ti

∥∥xqi (t)
∥∥2

Lqi
+
∥∥uqi (t)

∥∥2
Rqi

dt +
∥∥xqL

(
t f
)∥∥2

HqL



 ,

(3)
where 0 ≤ LT

qi
= Lqi ∈ Rnqi×nqi , 0 < RT

qi
= Rqi ∈ Rmqi×mqi ,

0 ≤ HT
qL

= HqL ∈ RnqL×nqL .

It is further assume that
Gqk = Ψqk−1qk Gqk−1 , (4)

for all 1 ≤ k ≤ L, which implies equivalent diffusion fields
before and after switching events.

3. NECESSARY OPTIMALITY CONDITIONS OF THE
STOCHASTIC HYBRID MINIMUM PRINCIPLE

In order to determine the necessary optimality conditions of the
Stochastic Hybrid Minimum Principle (SHMP) established in
Pakniyat and Caines (2016b), we form the family of system
Hamiltonians as

Hq (xq,uq,λq,Kq) =
1
2

(∥∥xq
∥∥2

Lq
+
∥∥uq

∥∥2
Rq

)

+λ T
q (Aqxq +Bquq)+KT

q Gq, (5)
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in the work of Hedlund and Rantzer (2002), Caines et al.
(2007); Schöllig et al. (2007) and Shaikh and Caines (2009),
to name but few of the major publications on the theory of
HDP. The equivalence of the Hybrid Minimum Principle and
Hybrid Dynamic Programming is established in Pakniyat and
Caines (2014b, 2017b) by showing that under certain technical
assumptions the adjoint process in the HMP and the gradient
of the value function in HDP are governed by the same set of
differential equations and have the same boundary conditions
and hence are almost everywhere identical to each other along
optimal trajectories.

In Pakniyat and Caines (2016b) the deterministic framework
established in Pakniyat and Caines (2013, 2014a,b, 2017a,b) is
extended in order to cover a general class of stochastic hybrid
systems with state dependant diffusion fields which are subject
to a large range of autonomous and controlled switchings and
state jumps. First order variational analysis is performed on
the stochastic hybrid optimal control problem via the needle
variation methodology and the necessary optimality conditions
are established in the form of the Stochastic Hybrid Minimum
Principle (SHMP). In the absence of stochastic diffusions, it
has been discussed in Pakniyat and Caines (2017b) that Riccati
equations derived from the HMP and HDP for Linear Quadratic
Hybrid Optimal Control Problems (LQ-HOCP) are, in general,
path-dependent. This is due to the path-dependence of Hamil-

tonian boundary conditions appearing in the associated neces-
sary conditions of the HMP and HDP. Subsequently, stochas-
tic Riccati equations derived for Linear Quadratic Gaussian
Hybrid Optimal Control Problems (LQG-HOCP) are generally
realization-dependent as the necessary optimality conditions of
the SHMP and Stochastic HDP (SHDP), including the Hamilto-
nian boundary conditions, generalize those in the deterministic
case (see Pakniyat and Caines (2016b) and Pakniyat (2016) for
more discussion).

In this paper, a class of Linear Quadratic Gaussian Hybrid Op-
timal Control Problems (LQG-HOCP) is presented for which
the Hamiltonian boundary conditions are path-independent and
therefore, the corresponding stochastic Riccati equations are
independent from the realization of stochastic diffusion terms.
An analytic example is provided to illustrate the results, and the
relation to the deterministic case is discussed.

2. A CLASS OF LINEAR QUADRATIC GAUSSIAN
HYBRID OPTIMAL CONTROL PROBLEMS

Let (Ω,ℑ,P) be a probability space with filtration ℑt , and w(�)
be a standard Wiener process. Consider a class of LQG-HOCP
with completely observed states, i.e. ℑt = σ {w(s) : 0 ≤ s ≤ t},
which is the natural filtration associated with the sigma-algebra
generated by the Wiener process.

Consider a hybrid system possessing linear vector fields in the
form of

dxqi = (Aqixqi +Bqiuqi)dt +Gqidw, t ∈ [ti, ti+1) , (1)
where qi ∈ Q, xqi ∈ Rnqi , uqi ∈ Rmqi , Aqi ∈ Rnqi×nqi , Bqi ∈
Rnqi×mqi , Gqi ∈Rnqi , 0 ≤ i ≤ L, tL+1 := t f . The initial condition
(q,x)(t0) = (q0,x0) is assumed to be deterministically known at
the initial time t0. In this paper, we only consider prearranged
controlled switchings, which result in a fixed sequence of
discrete states q1,q2, · · · ,qL, and at the switching instances
t j,1 ≤ j ≤ L, which are decision variables, i.e. not a priori
determined, the state jump maps are provided as

xq j (t j) = Ψσ j xq j−1 (t j−)≡ Ψq j−1q j xq j−1 (t j−) . (2)

Consider the LQG-HOCP for the hybrid cost

J =
1
2
E




L

∑
i=0

ti+1∫

ti

∥∥xqi (t)
∥∥2

Lqi
+
∥∥uqi (t)

∥∥2
Rqi

dt +
∥∥xqL

(
t f
)∥∥2

HqL



 ,

(3)
where 0 ≤ LT

qi
= Lqi ∈ Rnqi×nqi , 0 < RT

qi
= Rqi ∈ Rmqi×mqi ,

0 ≤ HT
qL

= HqL ∈ RnqL×nqL .

It is further assume that
Gqk = Ψqk−1qk Gqk−1 , (4)

for all 1 ≤ k ≤ L, which implies equivalent diffusion fields
before and after switching events.

3. NECESSARY OPTIMALITY CONDITIONS OF THE
STOCHASTIC HYBRID MINIMUM PRINCIPLE

In order to determine the necessary optimality conditions of the
Stochastic Hybrid Minimum Principle (SHMP) established in
Pakniyat and Caines (2016b), we form the family of system
Hamiltonians as

Hq (xq,uq,λq,Kq) =
1
2

(∥∥xq
∥∥2

Lq
+
∥∥uq

∥∥2
Rq

)

+λ T
q (Aqxq +Bquq)+KT

q Gq, (5)
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with λq ∈Rnq , Kq ∈Rnq . Then, according to the SHMP, for the
optimal input uo and the corresponding trajectory xo there exists
λ o,Ko

q : ℑt − adapted, such that

Hq
(
xo

q,u
o
q,λ

o
q ,K

o
q
)
≤ Hq

(
xo

q,v,λ
o
q ,K

o
q
)
, (6)

almost everywhere t ∈
[
t0, t f

]
, almost surely for all v :

ℑt −measurable random variables in Rmq , that is to say the
Hamiltonian is minimized with respect to the control input,
which determines the optimal continuous (valued) input as

uo
q =−R−1

q BT
q λ o

q , (7)
and further, the pairs of states and adjoint processes satisfy the
following stochastic Hamiltonian canonical equations

dxq
o =

∂Hq

∂λq

(
xo

q,u
o
q,λ

o
q ,K

o
q
)

dt +
∂Hq

∂Kq

(
xo

q,u
o
q,λ

o
q ,K

o
q
)

dw

=
(
Aqxo

q −BqR−1
q BT

q λ o
q
)

dt +Gqdw, (8)

dλq
o =−

∂Hqo

∂xq

(
xo

q,u
o
q,λ

o
q ,K

o
q
)

dt +Ko
q dw

=−
(
Lqix

o
q +AT

q λ o
q
)

dt +Ko
q dw, (9)

almost everywhere t ∈
[
t0, t f

]
, subject to

xo
q0
(t0) = x0, (10)

xo
q j
(t j) = Ψσq j−1,q j

xo
q j−1

(t j−) , (11)

λ o
qL

(
t f
)
= HqL xo

qL

(
t f
)
, (12)

λ o
q j−1

(t j) =
[
Ψσq j−1,q j

]T
λ o

q j
(t j+) . (13)

Moreover, at a switching time t j the Hamiltonian satisfies

Hq j−1

(
xo

q j−1
,uo

q j−1
,λ o

q j−1
,Ko

q j−1

)
−KoT

q j−1
Gq j−1

∣∣∣
t j−

= Hq j

(
xo

q j
,uo

q j
,λ o

q j
,Ko

q j

)
−KoT

q j
Gq j

∣∣∣
t j+

. (14)

�

4. HYBRID STOCHASTIC RICCATI EQUATIONS

We conjecture that xo
qi

and λ o
qi

, 0 ≤ i ≤ L, are related by

λ o
qi
(t) = Πqi (t)xo

qi
(t) , (15)

with Πqi (t) ∈C1
(
[ti, ti+1] ,Rnqi×nqi

)
. Applying Itô’s formula to

(15) (see e.g. Yong and Zhou (1999)) with appropriate substi-
tution of (8) to (13) (see also Pakniyat and Caines (2016a)) one
obtains

Ko
qi
(t) = Πqi (t)Gqi , (16)

and
Π̇qi = ΠqiBqiR

−1
qi

BT
qi

Πqi −ΠqiAqi −AT
qi

Πqi −Lqi , (17)
subject to

ΠqL

(
t f
)
= HqL , (18)

Πq j−1 (t j) = ΨT
σ j

Πq j (t j)Ψσ j , (19)

and from (14) we obtain

x

(
t−j
)

qj−1

T(
Lqj−1+Π(t j)

qj−1Aqj−1+AT
qj−1

Π(t j)
qj−1−Π(t j)

qj−1Bqj−1R
−1
qj−1

BT
qj−1

Π(t j)
qj−1

)
x

(
t−j
)

qj−1

= x(
t j)

q j

T(
Lq j+Π(t j)

q j Aq j+AT
q j

Π(t j)
q j −Π(t j)

q j Bq j R
−1
q j

BT
q j

Π(t j)
q j

)
x(

t j)
q j ,

(20)
for 1 ≤ j ≤ L, where Πq j (t j) = Πq j (t j+)≡ limt↓t j Πq j (t) since
Πqi (t) ∈C1

(
[ti, ti+1] ,Rnqi×nqi

)
.

Invoking (2) , (4) and (19), the Hamiltonian boundary condition
(20) is reduced to the following path-independent expression

Lq j−1 +ΨT
σ j

Π(t j)
q j Ψσ j Aq j−1 +AT

q j−1
ΨT

σ j
Π(t j)

q j Ψσ j

−ΨT
σ j

Π(t j)
q j Ψσ j Bq j−1R−1

q j−1
BT

q j−1
ΨT

σ j
Π(t j)

q j Ψσ j

=ΨT
σ j

(
Lq j+Π(t j)

q j Aq j+AT
q j

Π(t j)
q j −Π(t j)

q j Bq j R
−1
q j

BT
q j

Π(t j)
q j

)
Ψσ j .

(21)

Therefore, for the class of LQG-HOCP presented in Section
2, the set of Riccati equations (17), (18), (19) and (21) are
realization independent.

5. ILLUSTRATIVE EXAMPLE

5.1 Problem Formulation

Consider the following scalar hybrid system for which the con-
tinuous state is governed by the following stochastic differential
equations:

dx1 =

(
31
16

x1 +u1

)
dt +g1dw, (22)

dx2 =

(
3
8

x2 +u2

)
dt +g2 dw, (23)

with g1 = 1, g2 =
√

2g1 =
√

2, and the performance measure is
given as

J
(
t0, t f ,h0,L; IL

)
:= E

{
1
2

∫ ts

t0

(
(u1 (t))

2 +
1
2
(x1 (t))

2
)

dt

+
1
2

∫ t f

ts

(
(u2 (t))

2 +
1
4
(x2 (t))

2
)

dt +
1
2
×6

(
x2
(
t f
))2

}
,

(24)
where ts indicates the time of a controlled switching with the
jump map x2 (ts) =

√
2x1 (ts−).

5.2 Analytical Solution of the Riccati Equations

The associated stochastic Riccati equations in Section 4 are
written as

Π̇1 = Π2
1 −

31
8

Π1 −
1
2
= (Π1 −4)

(
Π1 +

1
8

)
, (25)

Π̇2 = Π2
2 −

3
4

Π2 −
1
4
= (Π2 −1)

(
Π2 +

1
4

)
, (26)

which are subject to the terminal and boundary conditions
Π2

(
t f
)
= 6, (27)

Π1 (ts) =
(√

2
)2

Π2 (ts) = 2Π2 (ts) , (28)

(Π1 (ts))
2 − 31

8
Π1 (ts)−

1
2
= 2

(
(Π2 (ts))

2 − 3
4

Π2 (ts)−
1
4

)
.

(29)

The above equations possess path-independent solutions in the
form of

Π2 (t) =
k2e

−5
4 t + 1

4

k2e
−5
4 t −1

, (30)

Π1 (t) =
4k1e

−31
8 t + 1

8

k1e
−31

8 t −1
, (31)
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Fig. 1. A sample path for continuous states, adjoint processes,
continuous inputs and Hamiltonians in the example with
t f = 1 and x0 = 2, g1 = 1, g2 =

√
2.
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Fig. 2. Ten sample paths for continuous states, adjoint pro-
cesses, continuous inputs and Hamiltonians in the example
with t f = 1 and x0 = 2, g1 = 1, g2 =

√
2.
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Fig. 3. Ten sample paths for continuous states, adjoint pro-
cesses, continuous inputs and Hamiltonians in the example
with t f = 1 and x0 = 2, g1 = 0.1, g2 = 0.1
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Fig. 4. The corresponding deterministic trajectories
(g1 = g2 = 0) for the example with t f = 1 and x0 = 2.
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Fig. 4. The corresponding deterministic trajectories
(g1 = g2 = 0) for the example with t f = 1 and x0 = 2.
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where

k2 =
5
4

e
5
4 t f , (32)

ts =
4
5

ln
(

17
27

k2

)
, (33)

k1 =
17
6

e
33
8 ts . (34)

5.3 Simulations

For the values of t f = 1, x0 = 2, g1 = 1, g2 =
√

2, the sim-
ulations for a sample path of continuous states, adjoint pro-
cesses, continuous inputs and Hamiltonians are illustrated in
Figure 1. A collection of ten sample paths for continuous states,
adjoint processes, continuous inputs and Hamiltonians for the
same values is presented in Figure 2. For smaller values of
diffusion coefficients g1,g2, trajectories are less influenced by
diffusion terms and the results more closely resemble those of
the deterministic LQ problem. This is illustrated in Figure 3
for the values of g1 = 0.1, g2 = 0.1

√
2 and in Figure 4 for

the corresponding deterministic case with g1 = g2 = 0. It is
observed in these figures that, in contrast to the deterministic
case, Hamiltonian functions are not constants for stochastic
hybrid optimal control problems.

6. CONCLUDING REMARKS

The linear quadratic Gaussian hybrid optimal control problems
studied in this paper constitute a class of LQG-HOCP whose
associated Riccati equations are independent form realizations
of stochastic diffusions. In this paper we derive the (hybrid)
stochastic Riccati equations using the Stochastic Hybrid Mini-
mum Principle (SHMP). As proved in the case of deterministic
hybrid optimal control problems (see e.g. Pakniyat and Caines
(2014b, 2016a)), the adjoint process in the HMP and the gra-
dient of the value function in Hybrid Dynamic Programming
(HDP) are identical to each other almost everywhere. This
intrinsic relation becomes an essential equivalence in the case
of LQ-HOCPs. Due to the existence of the same relationship
between the Stochastic Minimum Principle (SMP) and Stochas-
tic Dynamic Programming (SDP) and the same equivalence in
the LQG case (see e.g. Yong and Zhou (1999)), it is natural to
expect the adjoint process in the SHMP and the gradient of the
value function in Stochastic HDP (SHDP) to be identical almost
everywhere. Indeed, the formulation of SHDP, the investigation
of its relationship to the SHMP, and the demonstration of the
equivalence of the SHMP and SHDP in the LQG-HOCP case
is the subject of another study expected to be presented in a
consecutive paper.
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