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Abstract: Hybrid optimal control problems are studied for systems where autonomous and
controlled state jumps are allowed at the switching instants and in addition to running costs,
switching between discrete states incurs costs. A key aspect of the analysis is the relationship
between the Hamiltonian and the adjoint process before and after the switching instants as
well as the relationship between adjoint processes in the Minimum Principle and the value
function in the Dynamic Programming. The results are illustrated through a simple, but yet
very important, analytic example.
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1. INTRODUCTION

There is now an extensive literature on the optimal control
of hybrid systems (see e.g. [Barles et al. (2010); Bensous-
san and Menaldi (1997); Branicky et al. (1998); Clarke
and Vinter (1989); Dharmatti and Ramaswamy (2005);
Lygeros (2004); Shaikh and Caines (2007); Sussmann
(1999); Taringoo and Caines (2013, 2010); Xu and Antsak-
lis (2004)]). On one hand, the generalizations of the Pon-
tryagin Maximum Principle (PMP), which is a necessary
condition for optimality, results in the Hybrid Minimum
Principle (HMP) [Garavello and Piccoli (2005a,b); Passen-
berg et al. (2011); Shaikh and Caines (2007); Sussmann
(1999); Taringoo and Caines (2013, 2010); Xu and Antsak-
lis (2004)]. Given the initial conditions and a sequence
of autonomous or controlled switchings, the HMP gives
necessary conditions for the optimality of the trajectory
and the control inputs of a given hybrid system. These
conditions are expressed in terms of the minimization of
the distinct Hamiltonians defined along the sequence of
the discrete states of the hybrid trajectory. A feature of
special interest is the boundary conditions on the adjoint
processes and the Hamiltonian functions at autonomous
and controlled switching times and states; these boundary
conditions may be viewed as a generalization of the opti-
mal control case of the Erdmann-Weierstrass conditions of
the calculus of variations.

On the other hand, Dynamic Programming (DP) provides
sufficient conditions for optimality based upon the Dy-
namic Programming Principle [Bellman (1966); Jacobson
and Mayne (1970)]. With the exception of Hybrid Dy-
namic Programming (HDP) for regional dynamic systems
[Caines et al. (2007); Schöllig et al. (2007)], the discretized
version of HDP for continuous systems [Da Silva et al.
(2012); Hedlund and Rantzer (2002)] and the verifica-
tion theorem in [Shaikh and Caines (2009)], the current

generalizations of Dynamic Programming to hybrid sys-
tems are formulated for systems that undergo jumps at
autonomous and controlled switching times [Barles et al.
(2010); Bensoussan and Menaldi (1997); Branicky et al.
(1998); Dharmatti and Ramaswamy (2005)]. The assumed
jump condition in HDP [Barles et al. (2010); Bensoussan
and Menaldi (1997); Branicky et al. (1998); Dharmatti and
Ramaswamy (2005)], which apparently is restrictive due
to the obligation of the system to jump to a certain set,
does not appear in the HMP formulation. In past work of
the authors [Pakniyat and Caines (2013)] HMP results in
the presence of switching costs were proved through the
method of needle variations in the Mayer optimal control
problem setup and was extended to the general Bolza setup
through the calculus of variations methodology. In this
paper, we first provide HMP results for the general case
that includes autonomous and controlled switchings and
jumps that may incur switching costs, and relate them to
those of the HDP theorems; then we provide an analytic
example illustrating the relationship between the HMP
and HDP theories.

2. HYBRID SYSTEM

2.1 Basic Assumptions

A hybrid system (structure) H is a septuple

H = {H := Q× Rn, I := Σ× U,Γ, A, F,Ξ,M} (1)

where the symbols in the expression are defined as below.

A0: Q = {1, 2, ..., |Q|} ≡
{
q1, q2, ..., q|Q|

}
, |Q| < ∞ , is a

finite set of discrete states (components).

H := Q×M is called the (hybrid) state space of the hybrid
system H.
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I := Σ × U is the set of system input values, where
|Σ| <∞.

Γ : H × Σ → H is a time independent (partially defined)
discrete state transition map which is the identity on the
second (Rn) component.

Ξ : H × Σ → H is a time independent (partially defined)
continuous state jump transition map which is the identity
on the first (Q) component. All ξ ∈ Ξ are assumed to be
differentiable in the continuous state x.

A : Q × Σ → Q denotes both a finite automaton and the
automaton’s associated transition function, on the state
space Q and event set Σ, such that for a discrete state q ∈
Q only the discrete controlled and uncontrolled transitions
into the q-dependent subset {A (q, σ) , σ ∈ Σ} ⊂ Q occur
under the projection of Γ on its Q components: Γ : Q ×
Rn×Σ→ H|Q. In other words, Γ can only make a discrete
state transition in a hybrid state (q, x) if the automaton
A can make the corresponding transition in q.

U ⊂ Rm is the set of admissible input control values, where
U is an open bounded set in Rm.

U (U) := L∞ ([t0, T∗) , U), which is the set of all measur-
able functions that are bounded up to a set of measure zero
on [t0, T∗) , T∗ <∞. The boundedness property necessarily
holds since admissible input functions take values in the
open bounded set U which has compact closure Ū .

F is an indexed collection of vector fields {fq}q∈Q such

that fq ∈ Ck (Rn × U → Rn) , k ≥ 1 satisfies a uniformx

Lipschitz condition, i.e. there exists Lf < ∞ such that
‖fq (x1, u)− fq (x2, u)‖ ≤ Lf ‖x1 − x2‖, x1, x2 ∈ Rn, u ∈
U , j ∈ Q. We also assume that there exists Kf <∞ such

that max
q∈Q

(
sup
u∈U

(‖fq (0, u)‖)
)
≤ Kf .

M =
{
m̃k
α : α ∈ Q×Q, k ∈ Z+

}
denotes a collection of

switching manifold components, also called guard compo-
nents, such that, for any ordered pair α = (p, q), m̃k

α
is a smooth, i.e. C∞ codimension 1 sub-manifold of Rn,
possibly with boundary ∂m̃k

α, described locally by m̃k
α ={

x : m̃k
α (x) = 0

}
. It is assumed that m̃k

α ∩ m̃k
β = ∅, for

all α, β ∈ Q × Q,α 6= β, k, l ∈ Z+, except in those cases
where, for some j, m̃j

α is identified with its reverse ordered

version m̃j
ᾱ giving m̃j

α = m̃j
ᾱ.

This latter case corresponds to the common situation
where the switch of vector fields on the passage of the
continuous trajectory in one direction through a switching
manifold is reversed if a reverse passage is performed by
the continuous trajectory.

A switching manifold or (autonomous discrete (state)
transition) guard mp,q (see Shaikh and Caines (2007))
is the union (over k) of a set of switching manifold
components mk

p,q =
⋃
m̃ki
p,q;

ki

1 ≤ i ≤ n (k) where,

(i) m̃ki
p,q is a manifold component (as defined above)

(ii) x ∈ m̃k
p,q is such that x ∈ m̃ki

p,q ∩ m̃
kj
p,q, ki 6= kj if and

only if x ∈ ∂m̃ki
p,q ∩ ∂m̃

kj
p,q.

(iii) If ∂m̃ki
p,q∩∂m̃

kj
p,q 6= ∅ then ∂m̃ki

p,q∩∂m̃
kj
p,q is a piecewise

C∞ codimension 2 sub-manifold of Rn

A1: The initial state h0 := (q0, x (t0)) ∈ H is such that
mq0,qj (x0) 6= 0, for all qj ∈ Q.

3. HYBRID OPTIMAL CONTROL PROBLEM

A2: Let {lq}q∈Q , lq ∈ C
nl (Rn × U → R+) , nl ≥ 1, be a

family of cost functions; {cσ}σ∈Σ ∈ Cnc (Rn × Σ→ R+),
nc ≥ 1, be a family of switching cost functions; and
g ∈ Cng (Rn → R+) , ng ≥ 1, be a terminal cost function
satisfying the following:

There exists Kl < ∞ and 1 ≤ γl < ∞ such that
|lq (x, u)| ≤ Kl (1 + ‖x‖γl), x ∈ Rn, u ∈ U, q ∈ Q.

There exists Kc < ∞ and 1 ≤ γc < ∞ such that
|cσ (x)| ≤ Kc (1 + ‖x‖γc), x ∈ Rn, σ ∈ Σ.

There exists Kg < ∞ and 1 ≤ γg < ∞ such that
|g (x)| ≤ Kg (1 + ‖x‖γg ), x ∈ Rn.

Consider the initial time t0, final time tf <∞, initial hy-
brid state h0 = (q0, x0), and the upperbound of maximum
number of swithchings L̄ <∞. Let

SL =
{

(t0, id) , (t1, σq0q1) , . . . ,
(
tL, σqL−1qL

)}
≡ {(t0, q0) , (t1, q1) , . . . , (tL, qL)}

be a hybrid switching sequence and let IL := (SL, u) , u ∈
U , where U = Uo or U = Ucpt, be a hybrid input trajec-
tory which subject to A0 and A1 results in a (necessar-
ily unique) hybrid state process (see Shaikh and Caines
(2007)) and is such that L + 2 < L̄ controlled and au-
tonomous switchings occur on the time interval [t0, T (IL)],
where T (IL) ≤ tf . In this paper, the number of switchings
L is held fixed and we denote the corresponding set of
inputs by {IL}. Define the hybrid cost function on [t0, tf ]
as

J (t0, tf , h0, L; IL) :=
L∑
i=0

∫ ti+1

s=ti

lqi (xqi (s) , u (s)) ds

+

L∑
i=1

cσqi−1qi
(ti, xqi (ti−)) + g (xqL (tf ))

(2)

subject to

ẋqi (t) = fqi (xqi (t) , u (t)) , a.e. t ∈ [ti, ti+1) , (3)

h0 = (q0, xq0 (t0)) = (q0, x0) , (4)

xqj (ti) = ξ
(
xqi−1

(ti−)
)
≡ ξ

(
lim
t↑ti

xqi−1
(t)

)
(5)

where 1 ≤ i ≤ L, tL+1 = tf <∞ and L+ 2 ≤ L̄ <∞.

Then the Hybrid Optimal Control Problem (HOCP) is to
find the infimum Jo (t0, tf , h0, L) over the family of input
trajectories {IL}, i.e.

Jo (t0, tf , h0, L) = inf
IL
J (t0, tf , h0, L; IL) (6)
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4. HYBRID MINIMUM PRINCIPLE AND ITS
RELATION TO HYBRID DYNAMIC

PROGRAMMING

The Hybrid Minimum Principle (HMP) provides the nec-
essary optimality conditions for the solution to the above
optimal control problem. This results in a set of final value
differential equations for the so-called adjoint processes
which, together with the system’s initial value differential
equations and forwards discrete state transition functions,
give the optimal trajectory and the optimal control input
in case these are uniquely determined by the HMP neces-
sary conditions.

In Hybrid Dynamic Programming, the value function V at
a time τ ∈ [t0, tf ] is naturally defined as the optimal cost-
to-go for the hybrid system (1). Given the initial hybrid
state h0 at t0 the Hybrid Dynamic Programming Theorem
[Pakniyat and Caines (2014)] states that for any qj ∈ Q
which corresponds to a time interval (tj−1, tj ], and for any
τ ∈ (tj−1, tj ], it is the case that

V (t0, q0, x0) ≡ Jo (t0, tf , h0, L)

= inf
u
{
j−2∑
i=0

∫ ti+1

ti

lqi (x, u) ds+

j−1∑
i=1

cσqi−1qi
(xqi (ti−))

+

∫ τ

tj−1

lqj−1 (x, u) ds+ V
(
τ, q, x

(
τ ;uτt0

))
}

(7)

where, setting x (τ) = x
(
τ ;uτt0

)
,

V (τ, q, x (τ)) = inf
u
{
∫ tj

τ

lqj−1 (x, u) ds

+

L∑
i=j

∫ ti+1

ti

lqi (x, u) ds

+

L∑
i=j

cσqi−1qi
(ti, xqi (ti−)) + g (xqL (tf ))}

(8)

Theorem 1 [Pakniyat and Caines (2014)] Consider the
hybrid system H together with the assumptions A0, A1
and A2 as above and the HOCP (6). In addition, assume
that in any discrete state qj ∈ Q the optimal trajectories
for the system (3) are locally controllable on any time
interval. Define the family of system Hamiltonians by

Hq (x, λ, u) = λT fq (x, u) + lq (x, u) (9)

x, λ ∈ Rn, u ∈ U, q ∈ Q. Assume that the optimal control
uo is such that uo (t) ∈ U a.e. t ∈ [t0, tf ] and consider the
optimal value for the cost function J (t0, tf , h0, L)

Jo (t0, tf , h0, L) =
L∑
i=0

∫ ti+1

s=ti

lqi
(
xoqi (s) , uo (s)

)
ds

+

L∑
i=1

cσqi−1qi

(
ti, x

o
qi (ti−)

)
+ g

(
xoqL (tf )

) (10)

Then for the optimal input uo and the corresponding
optimal trajectory xo, there exists an adjoint process λo

for which

λ̇o = −∂Hqo

∂x
(xo, λo, uo) , a.e. t ∈ [t0, tf ] , (11)

λo (tf ) = ∇g (xo (tf )) , (12)

and

λo (tj−) ≡ λo (tj)

= ∇ξ|Tx(tj−) λ
o (tj+) + p ∇m|x(tj−) + ∇c|x(tj−) , (13)

with p ∈ R when tj indicates the time of an autonomous
switching, and p = 0 when tj indicates the time of a con-
trolled switching. Moreover, the Hamiltonian is minimized
with respect to u which in the case of differentiability, it
gives

∂Hqo

∂u
(xo, λo, u)

∣∣∣∣
u=uo

= 0 a.e. t ∈ [t0, tf ] , (14)

and at a switching time tj the Hamiltonian satisfies

Hqj−1
(tj−) = Hqj (tj+) + p∇tm+∇tc (15)

Theorem 2 [Pakniyat and Caines (2014)] Under the as-
sumptions of Theorem 1, with the additional assumptions
that V , fq and lq are twice continuously differentiable, the
adjoint process is almost everywhere equal to the gradient
of the value function, i.e.

λo = ∇xV a.e. t ∈ [t0, tf ] (16)

together with the corresponding boundary conditions.

5. ILLUSTRATIVE EXAMPLE

In this section, we provide an example for the theorems
above. Because of the complexity of nonlinear hybrid
systems, not many analytic examples are available. The
following example considers a scalar system that has an
exponential growth in its first dynamics and an exponen-
tial decay in the second dynamics. The growth and the
decay rates can be controlled by the control input at the
expense of running costs. The (controlled) switching is
decided freely by the controller (i.e. no switching manifold)
while this switching incurs a state-dependent cost which
is high near the origin, and hence the first dynamics is
desirable before the switching. The terminal cost has a
minimum at the origin and hence the second dynamics is
desirable after the switching.

Consider a hybrid system with the following indexed
vector fields

ẋ = f1 (x, u) = x+ xu, (17)

ẋ = f2 (x, u) = −x+ xu (18)

The initial condition h0 = (q (t0) , x (t0)) = (1, x0) and
t0 = 0 are assumed. The running costs l1 (x, u) for q = 1
and l2 (x, u) for q = 2 are equal to

l1 (x, u) = l2 (x, u) =
1

2
u2 (19)

At the moment of switching, the continuous state jumps
according to

x (ts) = ξ (x (ts−)) = −x (ts−) (20)
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and the switching incurs cost given by

c (x (ts−)) ≡ c1,2 (x (ts−)) =
1

1 + [x (ts−)]
2 (21)

The terminal cost function is defined as

g (x (tf )) =
1

2
[x (tf )]

2
(22)

Hence, the HOCP for the sequence of switching states
(q1, q2) = (1, 2) will be

J (t0, tf , h0, 1)

=

∫ ts

0

1

2
u2dt+

1

1 + [x (ts−)]
2 +

∫ tf

ts

1

2
u2dt+

1

2
[x (tf )]

2

(23)

and the Hamiltonians are given by

H1 =
1

2
u2 + λx (u+ 1) (24)

H2 =
1

2
u2 + λx (u− 1) (25)

Conditions on the Adjoint Processes and the
Hamiltonians

Using (14) we get
uo = −λx (26)

for both dynamics. The adjoint process dynamics is deter-
mined by (11) as

λ̇1 = −λ (uo + 1) = λ (λx− 1) (27)

λ̇2 = −λ (uo − 1) = λ (λx+ 1) (28)

with the terminal values (from Eq. (12))

λ2 (tf ) = ∇g|x(tf ) = x (tf ) (29)

and (from Eq. (13))

λ1 (ts−) ≡ λ1 (ts) = ∇ξ|x(ts−) λ2 (ts+) + ∇c|x(ts−)

= −λ2 (ts+) +
−2x (ts−)(

1 + [x (ts−)]
2
)2

(30)

As seen above, the adjoint process dynamics is coupled to
the continuous state dynamics which, given the optimal
control input, is coupled to the adjoint process:

ẋ1 = x (1 + uo) = x (1− λx) = −x (λx− 1) (31)

ẋ2 = x (−1 + uo) = −x (1 + λx) = −x (λx+ 1) (32)

with the initial values

x1 (0) = x0 (33)

and
x2 (ts) = ξ (x1 (ts−)) = −x1 (ts−) (34)

The Hamiltonian condition at the switching instant are
given by Eq. (15) as

H1 (ts−) = H2 (ts+) (35)

which gives

1

2
[uo (ts−)]

2
+ λ1 (ts−)x (ts−) [uo (ts−) + 1]

=
1

2
[uo (ts+)]

2
+ λ2 (ts+)x (ts+) [uo (ts+)− 1]

(36)

1

2
[−λ1 (ts−)x (ts−)]

2

+λ1 (ts−)x (ts−) [−λ1 (ts−)x (ts−) + 1]

=
1

2
[−λ2 (ts+)x (ts+)]

2

+λ2 (ts+)x (ts+) [−λ2 (ts+)x (ts+)− 1]

(37)

Putting x (ts+) from (34) in (37) and simplifying we get

x (ts−) [λ1 (ts−)− λ2 (ts+)]

=
1

2
[x (ts−)]

2
[
[λ1 (ts−)]

2 − [λ2 (ts+)]
2
] (38)

which requires that at least one of the following conditions
hold {

x (ts−) = 0
λ1 (ts−) = λ2 (ts+)
x (ts−) [λ1 (ts−) + λ2 (ts+)] = 2

(39)

The first condition is impossible for x0 6= 0 as the control
input cannot steer the trajectories to the origin. The third
one is also a contradiction to Eq. (30) as the sum of the
adjoint processes would need to be positive and negative
at the same time. Hence

λ1 (ts−) = λ2 (ts+) (40)

must hold which together with Eq. (30) gives

λ1 (ts−) = λ2 (ts+) =
−x (ts−)(

1 + [x (ts−)]
2
)2 (41)

Solving the set of differential equations (27), (28), (31) and
(32) with the boundary conditions (29), (30), (33) and (34)
constraint with (41) will give the optimal trajectories, the
optimal adjoint processes as well as the optimal switching
time (≡ switching state).

Derivation of the Adjoint Processes

Because of the special dynamics in this example, these
equations can be solved analytically as follows:

λ′1 :=
dλ1

dx
=
λ̇1

ẋ1
=

λ (λx− 1)

−x (λx− 1)
=
−λ
x

(42)

which gives

λ1 =
α

x
(43)

Similarly

λ2 =
β

x
(44)

Derivation of the Optimal Controls and Trajecto-
ries

Putting (43) and (44) in (26) we get

uo (t) = −α t ∈ [0, ts) , (45)

uo (t) = −β t ∈ [ts, tf ] (46)

Inserting (45) in (31) and (46) in (32) one gets

x (t) = x0e
(1−α)t t ∈ [0, ts) (47)

and
x (t) = x (ts) e

−(1+β)(t−ts)

= −x (ts−) e−(1+β)(t−ts) t ∈ [ts, tf ] (48)

where x (ts−) is replaced from (47) to give
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x (t) = −x0e
(1−α)ts−(1+β)(t−ts) t ∈ [ts, tf ] (49)

Therefore

λ1 (t) =
α

x (t)
=

α

x0e(1−α)t
t ∈ [0, ts] (50)

λ2 (t) =
β

x (t)
=

−β
x0e(1−α)ts−(1+β)(t−ts)

t ∈ (ts, tf ] (51)

The condition (40) implies

α = −β (52)

and (41) gives

α

x0e(1−α)ts
=

−x0e
(1−α)ts(

1 +
[
x0e(1−α)ts

]2)2 (53)

or

α =
−x2

0e
2(1−α)ts(

1 + x2
0e

2(1−α)ts
)2 (54)

and (29) results in

−β
x0e(1−α)ts−(1+β)(t−ts)

=
α

x0e(1−α)(2ts−tf )
= −x0e

(1−α)(2ts−tf )

(55)

or
α = −x2

0e
2(1−α)(2ts−tf ) (56)

Solving (54) and (56) will give α (and hence β) as well
as ts, considering that x0 and tf are given. The numerical
results for x0 = 0.5 and tf = 4 are shown in the Figure 1.

The Value Function and its Gradient Processes

In order to illustrate the relation (16) we compute the
value function. From the definition (8) we have:

V2 (t, x (t)) = g (x (tf )) +

∫ tf

t

1

2
u2 t ∈ (ts, tf ] (57)

and

V1 (t, x (t)) = g (x (tf ))+c (x (ts−))+

∫ tf

t

1

2
u2 t ∈ [0, ts]

(58)
where (45) and (46) hold and (using β = −α where
applicable):

x (tf ) = x (t) e−(1−α)(tf−t) t ∈ (ts, tf ] (59)

x (tf ) = −x (t) e−(1−α)(t+tf−2ts) t ∈ [0, ts] (60)

x (ts−) = x (t) e(1−α)(ts−t) t ∈ [0, ts) (61)

giving

V2 (t, x) =
1

2
x2e−2(1−α)(tf−t) +

1

2
α2 (tf − t) t ∈ (ts, tf ]

(62)
and

V1 (t, x) =
1

2
x2e−2(1−α)(t+tf−2ts)

+
1

2
α2 (tf − t) +

1

1 + x2e2(1−α)(ts−t)

t ∈ [0, ts] (63)

Now, we first take the gradients of (62)

0 0.5 1 1.5 2 2.5 3 3.5 4
−3

−2

−1

0

1

2

3

t

x

0 0.5 1 1.5 2 2.5 3 3.5 4
−0.4

−0.3

−0.2

−0.1

00

t

λ

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.05

0.1

0.15

0.2

t

V

Fig. 1. The optimal trajectory (top), the adjoint process
(middle) and the Value function (bottom) for the
system in Example 1 with x0 = 0.5 and tf = 4

∇V2 (t, x) = xe−2(1−α)(tf−t) =

[
x e−(1−α)(tf−t)

]2
x

(64)

But [
x e−(1−α)(tf−t)

]2
= [x (tf )]

2
(65)

and

[x (tf )]
2

= x2
0e

2(1−α)(2ts−tf ) = −α = β (66)

where the first equality in (66) is derived from (49) and
the second one from(56). Inserting (66) into (64) gives

∇V2 (t, x) =
β

x
≡ λ2 (67)

The gradient of (63) also gives

∇V1 (t, x) = x e−2(1−α)(t+tf−2ts) +
−2x e2(1−α)(ts−t)

1 + x2e2(1−α)(ts−t)

(68)

∇V1 (t, x) =
1

x

[
x e−(1−α)(t+tf−2ts)

]2
+

1

x
·
−2
[
xe(1−α)(ts−t)

]2(
1 +

[
xe(1−α)(ts−t)

]2)2

(69)

Since [
x e−(1−α)(t+tf−2ts)

]2
= [x (tf )]

2
= −α (70)

and
xe(1−α)(ts−t) = x (ts−) = x0e

(1−α)ts (71)
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Eq. (69) gives

∇V1 (t, x) =
−α
x

+
1

x
· −2x2

0e
2(1−α)ts(

1 + x2
0e

2(1−α)ts
)2 (72)

which according to Eq. (54) results in

∇V1 (t, x) =
α

x
≡ λ1 (73)

Now, in order to illustrate (13), or equivalently (30), we
evaluate (62) and (63) at t = ts to get

V2

(
ts+, x(ts+)

)
=

1

2
x2

(ts+)e
−2(1−α)(tf−ts) +

1

2
α2 (tf − ts)

(74)
and

V1

(
ts−, x(ts−)

)
=

1

2
x2

(ts−)e
−2(1−α)(tf−ts)

+
1

2
α2 (tf − ts) +

1

1 + x2
(ts−)

(75)

Taking the gradient, one gets

∇V2

(
ts+, x(ts+)

)
= x(ts+)e

−2(1−α)(tf−ts) = λ2 (ts+)
(76)

and

∇V1

(
ts−, x(ts−)

)
= x(ts−)e

−2(1−α)(tf−ts) +
−2x(ts−)[

1 + x2
(ts−)

]2
= λ1 (ts−) (77)

Noting that x (ts+) = −x (ts−) the relation (30) is
verified.
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