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Abstract— We propose a numerical method for the computa-
tion of the forward-backward stochastic differential equations
(FBSDE) appearing in the Feynman-Kac representation of
the value function in stochastic optimal control problems. By
the use of the Girsanov change of probability measures, it
is demonstrated how a rapidly-exploring random tree (RRT)
can be utilized for the forward integration pass, as long as
the controlled drift term is appropriately compensated in the
backward integration pass. A numerical approximation of the
value function is proposed by solving a series of function
approximation problems backwards in time along the edges
of the constructed RRT. Moreover, a local entropy-weighted
least squares Monte Carlo (LSMC) method is developed to
concentrate function approximation accuracy in regions most
likely to be visited by optimally controlled trajectories.

I. INTRODUCTION

The Feynman-Kac representation theory and its asso-
ciated forward-backward stochastic differential equations
(FBSDEs) has been gaining traction as a framework to
solve nonlinear stochastic control problems, including op-
timal control problems with quadratic cost [1], minimum-
fuel (L1-running cost) problems [2], differential games [3],
[4], and reachability problems [1]. Although initial results
demonstrate promise in terms of flexibility and theoretical
validity, numerical algorithms which leverage this theory
have not yet matured. For even modest problems, state-of-
the-art algorithms often have issues with slow and unstable
convergence to the optimal policy. Producing more robust
numerical methods is critical for the broader adoption of
FBSDE methods for real-world tasks.

Monte Carlo-based FBSDE numerical methods originated
in the mathematical finance community (see [5] for a review).
These methods are primarily concerned with the solution of
a single pair of forward and backward SDEs, typically be-
ginning by densely sampling the forward SDE, then solving
the backward SDE via a variety of techniques, including
estimating conditional expectations using a least-squares
Monte Carlo (LSMC) scheme [6], refining the process with
a Picard-iteration scheme [7], and refining over shorter
intervals using a multilevel scheme [8]. It was recognized
in [1] that applying Girsanov’s theorem to both of the pair
of forward and backward SDEs can be used to change the
sampling measure of the forward SDE at will, as long as an
appropriate compensation is added to the backward SDE.
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For optimal control problems it is desired that the value
function associated with the backward process be approx-
imated around the distribution of the optimally controlled
forward process. Since this distribution is not known a priori,
this necessitates an iterative-FBSDE (iFBSDE) numerical
method, which alternates between solving a particular pair
of FBSDEs and improving the forward sampling measure to
more closely match an optimal distribution, leading to the
methods proposed in [1], [2], [4].

In this work we offer a novel iFBSDE method which
incorporates rapidly-exploring random trees (RRTs) (see,
e.g., [9] and the recent survey in [10]), in order to more effi-
ciently explore the state space in the forward SDE sampling.
Using RRTs in the forward sampling allows us to spread
samples evenly over the reachable state space, increasing
the likelihood that near-optimal samples are well-represented
in the forward pass sample distribution. In the backward
pass, we take advantage of the path-integrated running costs
along with the estimates of the value function to produce
a heuristic which weighs paths according to a local-entropy
measure-theoretic optimization. Although local-entropy path
integral theory and RRTs have been used together in [11],
that method is more closely related to the path-integral
approach to control [12]. Our method similarly performs
forward passes to broadly sample the state space, but follows
them with backward passes to obtain approximations for the
value functions, and consequently obtain closed loop policies
over the full horizon.

The primary contributions of this paper are as follows:
• We provide the theoretical basis for the use of McKean-

Markov branched sampling in the forward pass of
FBSDE techniques.

• We introduce an RRT-inspired algorithm for sampling
the forward SDE.

• We present a technique for concentrating value function
approximation accuracy in regions containing optimal
trajectories.

• We propose an iterative numerical method for the pur-
pose of approximating the optimal value function and
its policy.

For the sake of brevity all the proof of the main theorems
have been removed. They can be found in the extended
version of the paper in [13].

II. THE HAMILTON-JACOBI EQUATION AND
ON-POLICY VALUE FUNCTION

Let (Ω,F , {Ft}t∈[0,T ],Q), be a complete, filtered prob-
ability space, on which WQ

s is an n-dimensional standard
Brownian (Wiener) process with respect to the probability
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measure Q and adapted to the filtration {Ft}t∈[0,T ]. Consider
a stochastic system whose dynamics are governed by

dXs = f(s,Xs, us) ds+ σ(s,Xs) dWQ
s , X0 = x0, (1)

where Xs is a Fs-progressively measurable state process
on the interval s ∈ [0, T ], taking values in Rn, u[0,T ]

is a progressively measurable input process on the same
interval, taking values in the compact set U ⊆ Rm, and
f : [0, T ] × Rn × U → Rn, σ : [0, T ] × Rn → Rn×n are
the Markovian drift and diffusion functions respectively. The
cost associated with a given control signal is

St[u[t,T ]] :=

∫ T

t

`(s,Xs, us) ds+ g(XT ), (2)

where ` : [0, T ] × Rn × U → R+ is the running cost,
and g : Rn → R+ is the terminal cost. We tacitly assume
all necessary regularity assumptions for ` and g to guarantee
existence and uniqueness of solutions [14, p. 156; Chapter 3,
Theorem 4.2, Theorem 4.4].

The stochastic optimal control (SOC) problem is to deter-
mine the value function V ∗ : [0, T ] × Rn → R+ defined as

V ∗(t, x) = inf
u[t,T ]

EQ

[
St[u[t,T ]]|Xt = x

]
. (SOC)

Under mild regularity assumptions, in particular that σσ>

is uniformly positive definite, there exists a unique classical
solution V ∗ to the Hamilton-Jacobi-Bellman PDE, as well
as a (not necessarily unique) optimal Markov control policy
π∗, which satisfies the inclusion

π∗(s, x) ∈ arg min
u∈U

{`(s, x, u) + f(s, x, u)>∂xV
∗(s, x)}, (3)

with the property that V ∗(t, x) = Et,xQ [St[π
∗] ], where

∂xV
∗ is the partial derivative of V ∗ with respect to state x

[15, Chapter 4, Theorems 4.2 and 4.4, and Chapter 6,
Theorem 6.2].

In this paper, instead of a direct solution of the HJB PDE,
we work with a class of generic Markov policies µ : [0, T ]×
Rn → U and their associated value functions V µ, and use
iterative methods to approximate V ∗ and π∗. The on-policy
value function is defined as

V µ(t, x) = Et,xQ [Sµt ], Sµt :=

∫ T

t

`µs ds+ g(XT ), (4)

with the process Xs satisfying the forward SDE (FSDE)

dXs = fµs ds+ σs dWQ
s , Xt = x, (5)

where, for brevity of exposition, we define fµs :=
f(s,Xs, µ(s,Xs)), and similarly for `, σ. We call µ an
admissible Markov policy if it is Borel-measurable and its
associated V µ is the unique classic solution to the Hamilton-
Jacobi PDE

∂tV
µ +

1

2
tr[σσ>∂xxV

µ] + (∂xV
µ)>fµ + `µ

∣∣
t,x

= 0,

V µ(T, x) = g(x), (HJ)

for (t, x) ∈ [0, T ) × Rn, where ∂t and ∂x are the partial
derivative operators in t and x, and ∂xx is the Hessian in x.
Hence, the optimal control problem is expressed as V ∗ =
minV µ over all admissible µ.

III. FEYNMAN-KAC-GIRSANOV FBSDE
REPRESENTATION

A. On-Policy FBSDEs
The positivity of σσ> yields that (HJ) is a parabolic PDE

and, hence, by the Feynman-Kac Theorem (see, e.g. [16])
it is linked to to the solution (Xs, Ys, Zs) of the pair of
FBSDEs consisting of the FSDE (5) and the backward SDE
(BSDE)

dYs = −`µs ds+ Z>s dWQ
s , YT = g(XT ), (6)

where Ys and Zs are, respectively, 1 and n-dimensional
adapted processes.

Theorem 3.1 (Feynman-Kac Representation): For the so-
lution (Xs, Ys, Zs) to the FBSDE characterized by (5) and
(6), it holds that

Ys = V µ(s,Xs), s ∈ [0, T ],

Zs = σ>s ∂xV
µ(s,Xs), a.e. s ∈ [0, T ],

(7)

Q-almost surely (a.s.), and, in particular,

Yt = EQ[Ŷt,τ |Xt] = V µ(t,Xt), Q-a.s., (8)

for 0 ≤ t ≤ τ ≤ T where

Ŷt,τ := Yτ +

∫ τ

t

`µsds. (9)

B. Off-Policy FBSDEs
Consider, contrary to the on-policy FBSDEs, the off-policy

drifted FBSDEs

dXs = Ks ds+ σs dWP
s , X0 = x0, (10)

dYs = −(`µs + Z>s Ds) ds+ Z>s dWP
s , YT = g(XT ), (11)

with Ds := σ−1s (fµs − Ks), where Ks is an arbitrary Fs-
progressively measurable and bounded process satisfying the
smoothness conditions of [17, Chapter 1, Theorem 6.16], P
is the new probability measure associated with Ks, and WP

s a
Brownian process over the new, complete, filtered probability
space (Ω,F , {Ft}t∈[0,T ],P).

Theorem 3.2: For the solution (Xs, Ys, Zs) to the FBSDE
characterized by (10) and (11), it holds that

Ys = V µ(s,Xs), s ∈ [0, T ],

Zs = σ>s ∂xV
µ(s,Xs), a.e. s ∈ [0, T ],

(12)

P-a.s., and in particular,

Yt = EP[Ŷt,τ |Xt] = V µ(t,Xt), P-a.s., (13)

where

Ŷt,τ := Yτ +

∫ τ

t

(`µs + Z>s Ds) ds. (14)

We can interpret this result in the following sense. As
long as the diffusion function σ is the same as in the on-
policy formulation, we can pick an arbitrary process Ks to be
the drift term which generates a distribution for the forward
process Xs in the corresponding measure P. The BSDE
yields an expression for Yt using the same process WP

s as
used in the FSDE. The term Z>s Ds acts as a correction in
the BSDE to compensate for changing the drift of the FSDE.
We can then use the relationship (13) to solve for the value
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function V µ, whose conditional expectation can be evaluated
in P. Although used in the analytic construction of the value
function, the measure Q does not require approximation to
solve for the value function.

C. Local Entropy Weighing
As discussed in Section III-B, the disentanglement of the

forward sampling from the backward function approximation
provides the opportunity to employ broad sampling schemes
to cover the state space with Monte Carlo samples. However,
fitting a value function broadly to a wide support distribution
might degrade the quality of the function approximation
since high accuracy of function approximation is more in de-
mand in those parts of the state space in proximity to optimal
trajectories. Once forward sampling has been performed and
later times of the value function have been approximated, we
can form a heuristic in which sample paths closer to optimal
trajectories are weighted more to concentrate value function
approximation accuracy in those regions.

To this end, we propose the use of a bounded heuristic
random variable ρt to produce a new measure Rt, where the
subscript refers to the restriction of P to Ft. In order to avoid
underdetermination of the regression by concentration over
a single or few samples, we select Rt as

Rt ∈ arg min
Rt

{
ERt [ρt] + λH(Rt‖Pt)

}
, (15)

with λ > 0 a tuning variable and H(Rt‖Pt) =
ERt

[
log
(
dRt
dPt

)
] is the relative entropy of Rt which takes its

minimum value when Rt = Pt, the distribution in which all
sampled paths have equal weight.

The minimizer (15), which balances between the value
of ρ and the relative entropy of its induced measure, has a
solution of R∗t determined [18, p. 2] as

dR∗t = ΘtdPt, Θt :=
exp(−1/λρt)

EPt [exp(−1/λρt)]
. (16)

Henceforth, we let Rt refer to this minimizer R∗t . In the
numerical approximation of this heuristic we can interpret the
weights as a softmin operation over paths according to the
heuristic, a method often used in deep learning literature [19].

Theorem 3.3: Assume ρτ is selected such that WP
s is

Brownian on the interval [t, τ ] in the induced measure Rτ .
It holds that

Yt = EPτ [Ŷt,τ |Xt] = V µ(t,Xt), Rτ -a.s., (17)

where Ŷt,τ is defined in (14). Furthermore, the minimizer φ∗

of the optimization

inf
φ∈L2

ERτ [(Ŷt,τ−φ(Xt))
2] = inf

φ∈L2

EPτ [ΘR|P
τ (Ŷt,τ−φ(Xt))

2],

(18)
over Xt-measurable square integrable variables φ(Xt) coin-
cides with the value function φ∗(Xt) = V µ(t,Xt).

In the following section, we evaluate the minimization of
the right hand side of (18) over parameterized value function
models to obtain an estimate of the value function.

To summarize, in this section we introduced three mea-
sures, (a) Q, the measure associated with the target policy µ
for the value function V µ, (b) P, the sampling measure used
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(d) RRT-Sampled, Weighted (R)

Fig. 1: Heatmap of different measure distributions for a 1-
dimensional SOC problem, illustrating how RRT-sampling and
local-entropy weighing can accelerate discovery of the optimal
distribution.

in the forward pass to explore the state space, and (c) Rτ ,
the local-entropy weighted measure used in the backward
pass to control function approximation accuracy. Fig. 1
illustrates how these results work together to rapidly discover
the optimal distribution. An on-policy method assumes the
knowledge of an initial suboptimal control policy, sampled
as represented in Fig. 1 (b), and the suboptimal value
function is solved in that distribution. If we begin with a
sampling measure which broadly explores the state space as
in Fig. 1 (c), we can produce an informed heuristic which
weighs this distribution as in Fig. 1 (d), so that the function
approximation is concentrated in a near-optimal distribution.
These results leave open the choice for a target policy µ
that produces Q, the drift process Ks that produces P and
the weighing function ρτ that produces Rτ . In the following
section we propose particular choices for each.

IV. FORWARD-BACKWARD RRT

A. McKean-Markov Branched Sampling

We approximate the continuous-time sampling distribu-
tions with discrete-time McKean-Markov branch sampled
paths as presented in [20]. First, for a given ∆t, the interval
[0, T ] is partitioned according to the time steps (t0 =
0, . . . , ti = (∆t)i, . . . , tN = T ). For brevity, we abbreviate
Xti as Xi and similarly for most variables.

In the forward sampling process, we produce a series
of path measures {

−→
P i}Ni=0,

−→
P i := 1

M

∑M
j=1 δξji

, where δ

is the Dirac-delta measure acting on sample paths ξji :=
(xj0,i, k

j
0,i, x

j
1,i, k

j
1,i, . . . , k

j
i−1,i, x

j
i,i), with xj`,i, k

j
`,i ∈ Rn.

The path notation xj`,i indicates that this element is the
sample of random variable X` that is the ancestor of sample
xji,i in the jth path ξji of the ith measure

−→
P i. Fig. 2 (b)

illustrates how these measures are represented using a tree
data structure. Each node in the tree xji , alternatively called
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(a) Parallel-Sampled (b) Branch-Sampled

Fig. 2: Comparing parallel-sampling of the path measure
−→
P i+1,

in which SDE paths are sampled independently, to the proposed
representation. Dotted edges are present in the data structure but
do not contribute to the path measure

−→
P i+1 (but will contribute to−→

P i and
−→
P i−1).

a particle, is associated with a path ξji whose final term is
xji,i = xji .

The edges in the tree represent an Euler-Maruyama SDE
step approximation of the forward SDE (10). When a node
in the tree at time i is selected for expansion, it becomes
the xji,i+1 element in the path ξji+1, its ancestry also in-
cluded. The element kji,i+1 ∼ h(xji,i+1) is sampled from
some random function which can depend on the state, and,
independently, wji,i+1 ∼ N (0,∆tIn). The next state in the
path is computed as

xji+1,i+1 = xji,i+1 + kji,i+1∆t+ σ(ti, x
j
i,i+1)wji,i+1. (19)

The measures
−→
P i and

−→
P i+1 may not agree on the interval

[0, ti]. To see why this is permissible, consider Theorem 3.3
with τ = ti+1 and t = ti. In a backward step, some Pi+1 is
used to produce a relationship to solve for the deterministic
function V µ(ti, x). But an independent application of the
theorem with τ = ti and t = ti−1 can use any new measure
Pi. The only requirement of that theorem is that each

−→
P i

is consistent with the assumptions placed on Pi, and this is
satisfied by the Euler-Maruyama sampling scheme.

In the construction of
−→
P i+1 in Fig. 2 (b) we can see that

some edges are multiply represented in the distribution. If
the drift term Ki were a deterministic function of Xi, such
a construction would represent an unfaithful characterization
of the path distribution because samples of the Brownian
process are independent and thus should be sampled as in
Fig. 2 (a). However, since Ki itself has a distribution, we can
interpret overlapping paths as the drift having been selected
so as to concentrate the paths in a certain part of the state
space. The evolution of the process Xi with law

−→
PXi in this

way is called McKean-Markov because the distribution of Xi

depends on the law
−→
PXi−1

of Xi−1, not just the realization
of Xi−1. That is, each particle xji is allowed to depend on
the full collection of particles {xji−1} at the previous time
step, instead of just its ancestor. Some guarantees about the
desirable properties of such representations—used also in
particle filters, Markov Chain Monte Carlo methods, and
evolutionary algorithms—are available in [20].

B. FBRRT Iterative Algorithm

The goal of the FBRRT algorithm is to produce the set
of parameters {αi}Ni=1 which approximate the optimal value
function V (x;αi) ≈ V ∗(ti, x). The forward pass produces a
graph representation G of the path measures {

−→
P i}Ni=1. Given

that the optimal policy has the form (3), we define the target
policy µi(x;αi+1) as the solution of the problem

min
u∈U
{`(ti, x, u) + f(ti, x, u)>∂xV (x;αi+1)}, (20)

so that it coincides with the optimal control policy when the
value function approximation is exact. The backward pass
uses G, µi, and ρi+1 to produce αi, backwards in time. At
the beginning of the next iteration, nodes with high heuristic
value ρi+1 are pruned from the tree and G is regrown from
those remaining.

C. Kinodynamic RRT Forward Sampling

In general, we desire sampling methods which seek to
explore the whole state space, increasing the likelihood of
sampling in the proximity of optimal trajectories. For this
reason, we choose methods inspired by kinodynamic RRT,
proposed in [9]. The selection procedure for this method
ensures that the distribution of the chosen particles is more
uniformly distributed in a user-supplied region of interest
X roi ⊆ Rn, more likely to select particles which explore
empty space, and less likely to oversample dense clusters of
particles.

With some probability εrrt
i ∈ [0, 1] we choose the RRT

sampling procedure, but otherwise choose a particle uni-
formly from {xji}Mj=1, each particle with equal weight.
This ensures dense particle clusters will still receive more
attention. Thus, the choice of the parameter εrrt

i balances
exploring the state space against refining the area around
the current distribution.

For drift generation we again choose a random com-
bination of exploration and exploitation. For exploitation
we choose Ki = f(ti, Xi, µi(Xi;αi)). For exploration we
choose Ki = f(ti, Xi, u

rand), where the control is sampled
randomly from a user supplied set urand ∼ U rand. For
example, for minimum fuel (L1) problems where control
is bounded u ∈ [−1, 1] and the running cost is L = |u|,
we select U rand = {−1, 0, 1} because the policy (20) is
guaranteed to only return values in this discrete set.

Algorithm 1 sketches out the implementation of the RRT-
based sampling procedure, producing the forward sampling
tree G. The algorithm takes as input any tree with width
M̃ and adds nodes at each depth until the width is M , the
parameter indicating the desired width. On the first iteration
there are no value function estimate parameters available
to produce a policy µ, so we set εrrt = 1 to maximize
exploration using the RRT sampling.

D. Path-Integral Backwards Weighing

We now propose a heuristic design choice for the back-
ward pass weighing variables ρi+1, and justify this choice. A
good heuristic will give high weights to paths likely to have
low value over the whole interval [0, T ]. Thus, in the middle
of the interval we care both about the current running cost
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Algorithm 1 RRT Branched-Sampling

1: procedure FORWARDEXPAND(G, (α1, . . . , αN ))
2: for k = M̃ + 1, · · · ,M do . Add node each loop
3: for i = 0, · · · , N − 1 do . For each time step
4: {xji}j ← G.nodesAtTime(i)
5: if εrrt > κrrt ∼ Uniform([0, 1]) then
6: xrand

i ∼ Uniform(X roi)
7: (xnear

i , jnear)← Nearest({xji}j , xrand
i )

8: else
9: (xnear

i , jnear) ∼ Uniform({xji}j)
10: end if . jnear is index of selected node
11: if εopt > κopt ∼ Uniform([0, 1]) then
12: ui ← µi(x

near
i ;αi+1) . (20)

13: else
14: ui ∼ U rand

15: end if
16: ki ← f(ti, x

near
i , ui)

17: wi ∼ N (0,∆tIn)
18: xnext

i+1 ← xnear
i + ki∆t+ σ(ti, x

near
i )wi

19: jnext ← G.addEdge(i, jnear, (xnear
i , ki, x

next
i+1))

20:
−→
` 0:i−1 ← G.getRunCost(i− 1, jnear)

21:
−→
` 0:i ←

−→
` 0:i−1 + `i(x

near
i , ui)∆t

22: G.setRunCost(i, jnext,
−→
` 0:i)

23: end for
24: end for
25: return G
26: end procedure

and the expected cost. A dynamic programming principle
result following directly from [14, Chapter 4, Corollary 7.2]
indicates that

V ∗(0, x0) =

min
u[0,ti+1]

EPui+1
[

∫ ti+1

0

`(s,Xs, us) ds+ V ∗(ti+1, Xi+1)],

where u[0,ti+1] is any control process in U on the interval
[0, ti+1] and Pui+1 is the measure produced by the drift Ks =
f(s,Xs, us). Inspired by this minimization, we choose the
heuristic to be

ρi+1 =

∫ ti+1

0

`(s,Xs, us) ds+ V ∗(ti+1, Xi+1), (21)

where u[0,ti+1] is chosen identically to how the control for
the drift is produced. Although the theory does not require
Ks to be a feasible drift under the dynamic constraints, for
reasons like this it is useful for it to be chosen in this way.
The running cost is computed in the forward sampling in
line 21 of Algorithm 1.

Algorithm 2 details the implementation of the backward
pass with local entropy weighting. The value function is rep-
resented by a linear combination of multivariate Chebyshev
polynomials up to the second order, V (x;αi) = Φ(x)αi.
Line 18 does not, theoretically, have an effect on the op-
timization, since it will come out of the exponential as a
constant multiplier, but it has the potential to improve the

Algorithm 2 Local Entropy Weighted LSMC Backward Pass

1: procedure BACKWARDWLSMC(G)
2: {ξjN}j ← G.pathsAtTime(N)
3: {xjN}j ← {ξ

j
N}j

4: yN ← [g(x1N ) · · · g(xMN )]>

5: αN ← arg minα
∑
j ΘN (ŷjN − Φ(xjN )α)2

6: for i = N − 1, · · · , 1 do . For each time step
7: {ξji+1}j ← G.pathsAtTime(i+ 1)
8: for j = 1, · · · ,M do . For each path
9: (xji , k

j
i , x

j
i+1)← ξji+1 . xji = xji,i+1, etc.

10: yji+1 ← Φ(xji+1)αi+1 . (17)
11: zji+1 ← σ>i+1(xji+1)∂xΦ(xji+1)αi+1 . (12)
12: µji ← µi(x

j
i ;αi+1) . (20)

13: dji ← σ−1i+1(xji+1)(fµi − k
j
i )

14: ŷji ← yji+1 + (`µi + zj>i+1d
j
i )∆t . (14)

15:
−→
` 0:i ← G.getRunCost(i, j)

16: ρji+1 ← yji+1 +
−→
` 0:i . (21)

17: end for
18: ρi+1 ← ρi+1 −minj{ρji+1} . exp conditioning
19: Θi+1 ← exp(−1/λρi+1) . (16)
20: αi ← arg minα

∑
j Θj

i+1(ŷji − Φ(xji )α)2 . (18)
21: end for
22: return (α1, . . . , αN )
23: end procedure

Fig. 3: Comparison of parallel-sampled FBSDE [2] and FBRRT for
the L1 double integrator problem for random initial states.

numerical conditioning of the exponential function compu-
tation as discussed in [19, Chapter 5, equation (6.33)]. The
λ value is, in general, a parameter which must be selected
by the user. For some problems we choose to search over a
series of of possible λ parameters, evaluating each one with a
backward pass and using the one that produces the smallest
expected cost over a batch of trajectory rollouts executing
the computed policy.

V. NUMERICAL RESULTS

We evaluated the FBRRT algorithm by applying it to a
pair of nonlinear stochastic optimal control problems. For
both problems, we used a minimum fuel (L1) running cost
of L(u) = a|u|, a > 0, u ∈ [−1, 1], where the terminal cost
is a quadratic function centered at the origin. Examples ran
in Matlab 2019b on an Intel G4560 CPU with 8GB RAM.
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The first problem is a L1 double integrator problem with
dynamics f =

[
x2 u

]>
and σ = diag(0.01, 0.1). We com-

pared the convergence speed and robustness of FBRRT to
parallel-sampled FBSDE [2] by randomly sampling different
starting states and evaluating their relative performance over
a number of trials. We normalized the final costs across the
initial states by dividing all costs for a particular initial state
by the largest cost obtained across both methods. For each
iteration, we assign the value of the accumulated minimum
value across previous iterations for that trial, i.e., the value
is the current best cost after running that many iterations,
regardless of the current cost. We aggregated these values
across initial states and trials into the box plots in Fig. 3.
Since FBRRT is significantly slower than the FBSDE per
iteration due to the RRT nearest neighbors calculation, we
scale each iteration by runtime. By nearly every comparison,
FBRRT converges faster and in fewer iterations than FBSDE,
and does so with half as many particle samples.

Fig. 4 illustrates FBRRT applied to the L1

inverted pendulum problem with dynamics f =[
x2 a1x2 + a2 sinx1 + a3u

]>
and σ = diag(0.04, 0.4).

Note that even though there were no paths in the tree that
continued along the 1st iteration’s mean trajectory (blue
line) from beginning to end, the algorithm was still able
to produce a policy in regions where no particles were
produced. The green particles along the backward swing
inform the policy in the beginning of the trajectory while
the green particles near the origin inform it near the end,
despite taking different paths in the tree. For the L1 inverted
pendulum problem evaluated in [2], convergence required
55 iterations, but for our method only 6 iterations were
needed to get comparable performance.

Fig. 4: Forward sampling tree for the first iteration of the L1

inverted pendulum problem. Hue corresponds to the path-integral
heuristic ρ used for weighing particles in the backward pass and
for pruning the tree (green values are smaller). The blue and
black dashed lines are the mean of trajectory rollouts, following
the policies computed at the end of the 1st and 6th iterations
respectively.

VI. CONCLUSIONS
In this work, we have proposed a novel generalization of

the iFBSDE approach to solve stochastic optimal control
problems. Leveraging the efficient space-filling properties
of RRT methods, we have demonstrated that our method
significantly improves convergence properties over previous
iFBSDE methods. We have shown how branched-sampling
works hand in hand with a proposed path integral-weighted
LSMC method, concentrating function approximation in the
regions where optimal trajectories are most likely to be
dense. We have demonstrated that FBRRT can generate
feedback control policies for nonlinear stochastic optimal
control problems with non-quadratic costs.

Future work includes investigating better methods of value
function representation and evaluation on higher dimensional
problems to demonstrate the usefulness of this method.
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