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Abstract— The presence of terminal state constraints in terms
of expectations is studied for steering the state of partially
observed linear stochastic systems. Three scenarios for the
observation process are considered, namely, (i) continuous-time
exact observations of the state, (ii) discrete-time exact observa-
tions of the state, and (iii) discrete-time exact observations of
the state accompanied by continuous-time noisy observations
of the state. Closed form expressions are presented for the
optimal inputs enforcing the terminal state constraint under
these information structures, which are expressed in terms of
controllability Gramians and solutions of Riccati and Lyapunov
equations. Numerical examples are provided to illustrate the
results.

I. INTRODUCTION

In several engineering applications, it is desired to bring
a system to a specific terminal configuration. A classical
example is bringing an inverted pendulum to the upright
position with zero velocity. A more complex example is the
vertical landing of a reusable rocket, e.g., the booster rocket
of SpaceX Falcon 9, which is required to come to a full
stop at an exact location on the landing platform. If dynamic
uncertainties are negligible, powerful theoretical tools are
available in the control theory literature, the most notable
being the Pontryagin Minimum Principle (MP) [1], which
determines the optimal input, among all control inputs for
the steering of the state to the desired terminal value.

In the presence of a stochastic diffusion, these state
steering problems are more challenging to solve and have
been the subject of only a limited number of studies [2]–[14].
For stochastic systems with linear dynamics and quadratic
cost, and in the absence of any additional state constraints,
the associated probability distributions are Gaussian, and
the dynamics for the mean state process and the covariance
state process are decoupled. This has led to the formulation
of such problems as the association of a desired Gaussian
distribution to the total probability distribution of the state
in both infinite time horizon [2]–[5], and finite time horizon
[6]–[14] settings. The accommodation of input constraints is
considered in [10], and convex relaxations for linear systems
subject to chance constraints (probabilistic constraints that
impose a maximum probability of constraint violation) are
studied in [12], [13]. Extensions of the probability distri-
bution assignment to nonlinear systems has been presented
for feedback-linearizable systems [15], and implementation
through iterative linearization is proposed in [16].

A fundamental limit of the current methodologies based
on the assignment of terminal probability distributions is
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that the studied probabilities are conditioned on the filtration
at the initial time. The accommodation of the information
obtained from exact observations of the state are studied in
[17]–[20] within the context of stochastic model predictive
control (MPC). However, these MPC-based methodologies
require recomputation of the entire procedure, and the effect
of incomplete and noisy observations of the state cannot be
easily accommodated into these studies.

In past work of the authors [21], an alternative approach
based on the Stochastic Minimum Principle (SMP) [22] is
presented for both linear and nonlinear stochastic systems
under full observation of the state. The proposed methodol-
ogy in [21] provides a natural accommodation of filtration,
permitting input policies to be adjusted to the obtained
information in order to enforce the desired terminal state
constraint. In this paper, we expand upon those results by
considering incomplete and noisy observations of the state
within the context of linear stochastic systems. In particular,
by considering three scenarios for the observation process,
we establish closed form expressions for the optimal inputs
for the enforcement of the terminal state constraint under the
information structure corresponding to these scenarios.

The organization of the paper is as follows. In Section II
a class of continuous time linear stochastic systems and
the associated filtration-adapted inputs are presented. The
optimal state steering problem is defined as the determination
of an input to satisfy the filtration-adapted constraint on the
conditional expectation of the terminal state, while minimiz-
ing a performance measure under all filtrations. The under-
lying assumptions on the system along with the necessary
notation and fundamental notions appearing in the results
are presented in Section III. The considered scenarios for
the observation process are presented in Section IV. Namely,
Section IV-A presents the case of continuous in time exact
observations of the state, Section IV-B considers the case of
discrete-time exact observations of the state, and Section IV-
C studies the case with discrete-time exact observations
accompanied by continuous-time noisy observations of the
state, and where the terminal state constraint is enforced
under the exact (discrete) subset of the information. To
illustrate the results, numerical examples are provided in
Section V and the performance of the controllers under
each information structure are compared. Discussions about
the results and further concluding remarks are provided in
Section VI.

II. PROBLEM STATEMENT

Consider a linear stochastic system governed by the con-
trolled Itô differential equation

dxs = (Asxs +Bsus) ds+Gsdws, (1)
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where, xs ∈ Rnx , us ∈ Rnu are, respectively, the values of
the state and the input processes at time s ∈ [t0, tf ], and
ws ∈ Rnw is a standard nw-dimensional Wiener process,
and where As ∈ Rnx×nx , Bs ∈ Rnx×nu and Gs ∈ Rnx×nw
are deterministic matrix-valued bounded functions of time.

Let Fot denote the information available from
observations up until time t ∈ [t0, tf ], which will be
specified later, and let an Fos -adapted input be denoted by
JuK ≡ JuKtft0 := {us, s ∈ [t0, tf ];us ∈ Rnu , us : Fos -adapted}.
We introduce the notation

EJuK
Fot

[(·)] := E
[
(·)
∣∣Fot ; JuK

]
(2)

for the conditional expectation of any random variable given
the available information at time t and the input process JuK.

The objective of this paper is the characterization of inputs
for the enforcement of the terminal state constraint

EJuK
Fstt

[xtf ] = µf , (3)

for all t ∈ [t0, tf ], where Fstt ⊆ Fot , to be specified in the
next section, is a subset of the available filtration over which
the state steering constraint (3) is enforced.

The cost-to-go associated with an input JuK is defined by

J
(
t, xt; JuK

)
:=

1

2
EJuK
Fot

[ ∫ tf

t

uTsRsusds

+ (xtf − µf )THf (xtf − µf )

]
, (4)

where µf ∈ Rnx is a fixed desired terminal state, and Rs =
RT
s ∈ Rnu×nu , Rs > 0 is a deterministic matrix-valued

bounded function of time and Hf = HT
f ∈ Rnx×nx , Hf ≥ 0.

III. DEFINITIONS AND UNDERLYING ASSUMPTIONS

Let Φ(s, t) ∈ Rn×n denote the state transition matrix from
t to s for the system (1), which is the solution of

Φ̇ ≡ ∂Φ(s, t)

∂s
= AsΦ, Φ(t, t) = I. (5)

For each t, τ ∈ [t0, tf ] such that t0 ≤ τ < t ≤ tf , let us
define the Gramian as

G(τ, t) :=

∫ t

τ

Φ(tf , s)BsR
−1
s BT

s Φ(tf , s)ds. (6)

The above definition of the Gramian is a variant of the
conventional controllability Gramian (see e.g., [23, Theorem
6.1]) which is related to (6) by taking Rs ≡ Inu×nu and
selecting τ = t0 and t = tf .

We also define Π(s; tf ) as the solution of the following
Riccati equation

Π̇s ≡
d

ds
Π(s; tf ) = ΠsBsR

−1
s BT

s Πs −ΠsAs −AT
sΠs,

Π(tf ; tf ) = Hf . (7)

Assumption 3.1: In this paper, we assume that
(i) The pair (A,B) is controllable, hence, the Gramian (6)

is non-singular and, therefore, it is invertible.
(ii) The nullity of the diffusion coefficient G is zero, i.e.,

Gs is full-rank for all s ∈ [t0, tf ].
(iii) The system is noise controllable, i.e., for all s ∈

[t0, tf ], Im(Gs) ⊂ Im(Bs), that is, ∀w ∈ Rnw ,∃u ∈
Rnu s.t. Bsu = Gsw.

IV. OBSERVATION-BASED STEERING OF THE STATE

While it is possible to consider various cases for the ob-
servation filtration Fot and the filtration Fstt for the steering
constraint enforcement, we restrict our attention to three
cases. Namely, continuously in time exact measurements of
the state; sampled data (discrete in time) exact measurements
of the state; and sampled discrete measurements of the state
combined with continuous noisy observations.

A. CFO: Continuous-Time Full Observation of the State
In this case, the exact value of the state xt is measured at

each time t ∈ [t0, t] and it is made available to the controller.
In other words, the information available at time t is Fot =
Fx,ct , where

Fx,ct := σ{xs; s ∈ [t0, t]}. (8)

In this case, the steering constraint (3) is enforced under
the same filtration.

Theorem 4.1: For the enforcement of (3) under the filtra-
tion Fstt = Fx,ct , the minimum value of the cost (4) under
the filtration Fot = Fx,ct is achieved by

u∗s = −R−1
s BT

s Φ(tf , s)
T
[
G(t, tf )

]−1
(Φ(tf , t)xt − µf )

−R−1
s BT

s Π(s; tf )

(
xs − Φ(s, t)xt

+ G(t, s)Φ(tf , s)
T
[
G(t, tf )

]−1
(

Φ(tf , t)xt − µf
))

, (9)

where the state transition matrix Φ is defined in (5), the
Gramian G is defined in (6), and the Riccati matrix Π is
defined in (7). �

Proof: Since G is bounded and under the Assump-
tion 3.1(ii), its nullity is zero, the sigma algebras Fx,ct and
Fwt := σ{ws; s ∈ [t0, t]} are equivalent [24, Lemma 1.1] and
the set of Fx,ct -adapted inputs are dense in the set of Fwt -
adapted inputs [24, Lemma 1.2]. Hence, the requirements
(3) and (4) are equivalent to the conditioning on Fwt since
xt0 = x0 is deterministic and, therefore, [21, Theorem 3.1]
can be invoked to obtain (9).

B. DFO: Discrete-Time Full Observation of the State
In this case, instead of perpetual measurements of the state

as in Section IV-A, the observations are made only over a
finite set of strictly increasing sampling times {τi}Ni=0 within
[t0, tf ], such that τ0 := t0 < τ1 < · · · < τN < τN+1 := tf .
Thus Fot = Fx,dt , where

Fx,dt := σ{xτi ; τi ∈ {τj}τj≤t}. (10)

This case is very common in engineering applications
where a continuous time physical system is observed by
digital measurement devices. Due to its nature, this class of
observations is sometimes referred to as sampled-data obser-
vations. We consider the case where the steering requirement
(3) is enforced based on the same filtration.

Theorem 4.2: For the enforcement of (3) under the filtra-
tion Fstt = Fx,dt , the minimum value of the cost (4) under
filtration Fot = Fx,dt is achieved by the input policy

u∗s = −R−1
s BT

s Φ(tf , s)
T
[
G(τ, tf )

]−1
(Φ(tf , τ)xτ − µf ) ,

(11)
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where τ := max{τi, s.t. τi ≤ t} is the time of the most
recent observation of the state and xτ is the corresponding
observed value.

Proof: Define the following variables

x̄s := EJu∗K
Fx,dt

[xs], ūs := EJu∗K
Fx,dt

[us], (12)

x̃s := xs − x̄s, ũs := us − ūs, (13)

and recall that under Fstt = Fx,dt , the terminal constraint (3)
imposes a constraint on the x̄ process, i.e.,

x̄tf = µf , (14)

whereas x̃tf is free (unconstrained). Noting the zero expec-
tation terms E[x̃] = 0, E[x̄Tx̃] = 0, etc., the cost (4) can be
decomposed as

J
(
t, xt; JuK

)
=

1

2
EJuK
Fot

[ ∫ tf

t

(ūs + ũs)
TRs(ūs + ũs)ds

+ (x̄tf + x̃tf − µf )THf (x̄tf + x̃tf − µf )

]
(14)
=

1

2

tf∫
t

ūTsRsūsds+
1

2
EJuK
Fot

[ ∫ tf

t

ũTsRsũsds+ x̃TtfHf x̃tf

]
≡ J

(
t, x̄t; JūK

)
+ J

(
t, x̃t; JũK

)
. (15)

From the definitions of x̄s and x̃s and the dynamics (1),
it follows that

dx̄s = (Asx̄s +Bsūs)ds, (16)
dx̃s = (Asx̃s +Bsũs)ds+Gsdws, (17)

hold over the interval [t, tf ], subject to the initial conditions

x̄t = EJu∗K
Fx,dt

[xt] = x̂t, x̃t = x̌t, (18)

where the process x̂ is defined on the interval [τ, t] as the
solution of

dx̂s = (Asx̂s +Bsus)ds, x̂τ = xτ , (19)

and the (unobserved) process x̌ is the solution of

dx̌s = Asx̌sds+Gsdws, x̌τ = 0. (20)

In other words, the minimization of the cost (4) under
the dynamics (1) and the terminal state constraint (3) is
decomposed into

inf
JuK

J
(
t, xt; JuK

)
= inf

JūK
J
(
t, x̄t; JūK

)
+inf

JũK
J
(
t, x̃t; JũK

)
, (21)

where, on the right hand side, the first term corresponds
to the fixed end point deterministic optimal control prob-
lem with the dynamics (16), the cost J

(
t, x̄t; JūK

)
=

1
2

∫ tf
t
ūTsRsūsds, the initial condition (18) and the ter-

minal condition (14), and the second term corresponds
to the free end point stochastic linear quadratic regulator
problem with the dynamics (17), the cost J

(
t, x̃t; JũK

)
=

1
2E

JuK
Fot

[ ∫ tf
t
ũTsRsũsds + x̃TtfHf x̃tf

]
, and the initial condi-

tion (18).

In order to obtain the solution of these problems, consider
the two auxiliary problems over the interval [τ, tf ], i.e.,

inf
JūK

tf
τ

1

2

∫ tf

τ

v̄TsRsv̄sds,

d

ds
z̄s = Asz̄s +Bsv̄s, z̄τ = xτ , z̄tf = µf , (P1)

and

inf
JũK

tf
τ

1

2
EJũK
Foτ

[ ∫ tf

τ

ṽTsRsṽsds+ z̃TtfHf z̃tf

]
,

dz̃s = (Asz̃s +Bsṽs)ds+Gsdws, z̃τ = 0. (P2)

The optimal input for the auxiliary problem (P1) has the
form

v̄∗s = −R−1
s BT

s Φ(tf , s)
T
[
G(τ, tf )

]−1
(Φ(tf , τ)xτ − µf ) ,

(22)
for s ∈ [τ, tf ] and the optimal input for the auxiliary problem
(P2) over [τ, tf ] is

ṽ∗s = 0, (23)

since any nontrivial input process adapted to Fot = Fx,dt
yields a higher cost.

It remains to show that the optimal solution for the x =
x̄ + x̃ process coincides with the optimal solution for the
z = z̄ + z̃ process, i.e. u∗ a.s.= v∗. This is simply shown by
the method of contradiction by, first, arguing that under the
Assumption 3.1, v∗ uniquely exists and second, by arguing
that if ū∗ 6= v̄∗ over an interval [t′, t′′] ⊂ [t, tf ] then it
violates the uniqueness of v∗, i.e. u∗ must also be an optimal
input for the process z because z̄∗t′ = x̄t′ due to that fact that
v∗s ≡ v̄∗s (and ṽ∗s = 0) for s ∈ [τ, t′] are pure functions of
time (notice also that for t′ = t, we obtain z̄∗t = x̄t ≡ x̂t).

Thus, u∗ a.s.
= v∗ must hold, which together with u∗s =

ū∗s + ũ∗s , the expression (11) is obtained.

C. DFO-CNO: Discrete-Time Full Observation of the State
together with Continuous-Time Noisy Observations

For this case, full observations of the state are taken over
a discrete set of times, as in Section IV-B, but in between
these times, we have access to a noisy observation of the
state, throughout the process

dys = Csxsds+Dsdvs, (24)

where the observation noise vs ∈ Rnv , s ∈ [t0, tf ] is a
standard nv-dimensional Wiener process, independent of the
process noise ws. Hence, Fot = σ{Fx,dt ∪ Fyt } where Fx,dt
is defined in (10), and Fyt ≡ F

dy
t are defined as

Fyt := σ{ys; s ∈ [t0, t]} ≡ Fdyt := σ{dys; s ∈ [t0, t]}. (25)

Assumption 4.3: We assume that the nullity of the matri-
ces C and D are zero, i.e., Cs and Ds are full-rank for all
s ∈ [t0, tf ].

This case often arises in applications where a digital
measurement device provides accurate information about the
state at countable time instances, and a physical device with
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indirect measurements provides noisy observations contin-
uously in time. We consider the case where the steering
requirement (3) is enforced based on the un-noisy (exact)
subset of the observation information.

Theorem 4.4: For the enforcement of (3) under the filtra-
tion Fstt = Fx,dt , the minimum value of the cost (4) under
filtration Fot = σ{Fx,dt ∪ Fyt } is achieved by

u∗s = −R−1
s BT

s Φ(tf , s)
T
[
G(τ, tf )

]−1
(Φ(tf , τ)xτ − µf )

−R−1
s BT

s Π(s; tf )
(
x̂s − Φ(s, τ)xτ

+ G(τ, s)Φ(tf , s)
T
[
G(τ, tf )

]−1(
Φ(tf , τ)xτ − µf

))
, (26)

where xτ is the most recent observation of the state, and
x̂s := EJuK

Fot
[xs] is obtained from the Kalman-Bucy filter

dx̂s = (Asx̂s+Bsus)ds+ΣsC
T
s (DsD

T
s )−1(dys−Csx̂sds),

(27)
with Σs := EJuK

Fot

[
(xs − x̂s)(xs − x̂s)

T
]

governed by the
following Lyapunov equation

Σ̇s = (As−BsBT
s Π(s; tf ))Σs+Σs(As−BsBT

s Π(s; tf ))T

− ΣsC
T
s (DsD

T
s )−1CsΣs +GsG

T
s , (28)

subject to the (re)initialization condition Στ = 0.
Proof: Due to space limitations, only a sketch of the

proof is provided here.
With the definition of x̂s := EJu∗K

Fot
[xs], it follows that

x̂s
(12)
= EJu∗K

Fot
[x̄s + x̃s]

(13)
= EJu∗K

Fot
[EJu∗K
Fx,dt

[xs]] + EJu∗K
Fot

[x̃s] =

x̄s + EJu∗K
Fot

[x̃s]. Moreover, EJu∗K
Fot

[x̃s] = EJu∗K
σ{Fx,dt ∪Fyt }

[x̃s] =

EJu∗K
Fyt

[x̃s], where the last equality is obtained using the fact

that EJu∗K
Fx,dt

[x̃s] = 0.

Thus, with the definition of x̌s := xs − x̂s ≡ EJu∗K
Fyt

[x̃s],

and following similar steps as in the proof of Theorem 4.2,
we obtain (P1) together with

inf
JǔK

tf
τ

1

2
EJǔK
Fyτ

[ ∫ tf

τ

ǔTsRsǔsds+ x̌TtfHf x̌tf

]
,

dx̌s = (Asx̌s +Bsǔs)ds+Gsdws, x̌τ = 0,

dy̌s = Csx̌sds+Dsdvs, (P3)

whose solution is obtained from an LQG observer based
controller with a Kalman-Bucy filtration [25] for the state
estimator.

V. NUMERICAL ILLUSTRATIONS

Consider the system governed by

dxs =

([
0 1
1 2

][
x

(1)
s

x
(2)
s

]
+

[
0
1

]
us

)
ds+

[
0
1

]
dws,

(29)
over the time horizon [t0, tf ] = [0, 1], with the initial
condition x0 = [1, 1]T, and consider the problem of steering
its state towards the desired terminal state by enforcing

EJuK
Fstt

[x1] =

[
−1
−1

]
, (30)

for all t ∈ [0, 1], and consider the associated optimal control
problem with the cost

J
(
t, xt; JuK

)
:= EJuK

Fot

[ ∫ tf

t

1

2
u2
sds+

1

2

∥∥xtf − µf∥∥2
]
.

For the case of Fot = Fstt = Fx,ct , i.e., the case of
continuous full state observation, the results of Theorem 4.1
are illustrated in Figure 1 for 50 samples paths, and the as-
sociated distributions to 2000 samples paths for the terminal
state and the terminal input are displayed in Figure 2. It can
be observed that the terminal state matches with the desired
value almost surely, i.e., the terminal state distribution is a
Dirac delta distribution with its mean matching the desired
state and a zero covariance1. However, the use of large
input values is inevitable since the process noise pushes the
system away from the satisfaction of this constraint, and the
counterbalance of this effect requires larger and larger input
values as the time approaches the terminal time. This can be
observed in Figures 1 and 2 and it is also anticipated due to
the appearance of [G(t, tf )]−1 in the control law (9).

For the case of Fot = Fstt = Fx,dt with discrete observa-
tions every 0.05 sec, the optimal trajectories are displayed
in Figure 3 and the associated terminal distributions are
illustrated in Figure 4. Moreover, in order to illustrate the
effect of inter-measurement time, the optimal trajectories and
the associated terminal distributions for the case of discrete
observations every 0.01 sec are illustrated, respectively, in
Figure 5 and Figure 6. It can be observed from these
examples that the enforcement of the terminal state constraint
(3) under the filtration corresponding to discrete observations
of the state results in a terminal state distribution with its
mean matching with the desired state value, but non-zero
covariance. This distribution is a function of the length of
inter-observation times, and in particular, the penultimate
observation preceding the terminal time. However, this is
accompanied by the benefit of avoiding large input values the
statistics of which is also a function of the length of inter-
observation times. This can be observed in Figures 4 and 6,
and is also anticipated from the control law (11) and, in par-
ticular, from the fact that [G(τN , tf )]−1 ≡ [G(τN , τN+1)]−1

possesses upper bounds as function of τN+1 − τN .
For the case of Fot = σ{Fx,dt ∪Fyt } and Fstt = Fx,dt , we

consider the observation process

dys ≡ d

[
y

(1)
s

y
(2)
s

]
=

[
1 0
0 1

] [
x

(1)
s

x
(2)
s

]
ds

+

[
0.005 0

0 0.005

]
d

[
v

(1)
s

v
(2)
s

]
, (31)

to accompany discrete observations every 0.01 sec. The opti-
mal trajectories and the associated terminal distributions are
displayed, respectively, in Figure 7 and Figure 8. It can be
observed that the presence of continuous noisy observations

1The reason that the experimental distribution displayed in Figure 2 is not
exactly a delta distribution is due to the facts that (i) the time-discretization
in the numerical solution and (ii) the space discretization in the derivation of
the experimental distribution. However, in mathematical terms, the equality
is achieved almost surely, i.e. the probability of inequality is zero.
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Fig. 1: State evolution and the associated optimal inputs with
continuous-time full state observation.

Fig. 2: Distribution of the terminal state and input for 2000
sample paths with continuous-time full state observation.

Fig. 3: State evolution and the associated optimal inputs with
discrete full state observations every 0.05 sec.

Fig. 4: Distribution of the terminal state and input for 2000
samples with discrete full state observations every 0.05 sec.

Fig. 5: State evolution and the associated optimal inputs with
discrete full state observations every 0.01 sec.

Fig. 6: Distribution of the terminal state and input for 2000
samples with discrete full state observations every 0.01 sec.

Fig. 7: State evolution and the associated optimal inputs
with discrete full state observations every 0.01 sec and noisy
observations in between.

Fig. 8: Distribution of the terminal state and input for 2000
samples with discrete full state observations every 0.01 sec
and noisy observations in between.
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in addition to discrete exact observations yields similar prop-
erties for the terminal state and terminal inputs whenever the
terminal state constraint (3) under the filtration corresponding
to discrete observations of the state. This can be deduced
by comparing Figures 7 and 8 with Figures 5 and 6. The
significant difference, however, lies in the fact the cost for
this case is necessarily lower than the cost for the case with
only discrete observations.

VI. CONCLUDING REMARKS

The enforcement of terminal state constraints under differ-
ent information structures is studied and closed form expres-
sions of the optimal input for the steering of the state towards
the desired state are established. Since the controllability
Gramian and solutions of Riccati and Lyapunov equations
are fundamental characteristics of the system which can
be computed and stored in advance of implementation, the
required online computations are minimal and are limited to
substitutions of the state observations.

In this study, the considered terminal state constraints are
defined over the first moment (expectation) of the terminal
state and, therefore, the second moment (covariance) of
the terminal state becomes a byproduct of the assumed
information structure. To be specific, the enforcement of the
terminal state constraints under the filtration associated with
continuous observations of the state yield a zero covariance
for the terminal state in the expense of the appearance of
large input values. In contrast, the enforcement under the
filtration associated with discrete observations of the state
yield a non-zero but finite fixed covariance which depends
on inter-observation times. The presence of continuous noisy
observations of the state does not significantly change this
covariance, and only serves in cost minimization. A major
practical benefit of enforcement under discrete observations,
in addition to requiring fewer observations, is that it yields a
bound over the input values required to enforce the terminal
state constraint.

Future work includes the study of other scenarios for
the state observation and the constraint enforcement; in
particular, the case where the discrete observations are them-
selves incomplete and noisy. Further avenues of research also
include the extension of the results for nonlinear and hybrid
stochastic systems.
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