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Abstract—Hybrid optimal control problems are studied for
systems where, in addition to running costs, switching between
discrete states incurs costs. A key aspect of the analysis is the
relationship between the Hamiltonian and the adjoint process
before and after the switching instants. In this paper, the
analysis is performed for systems for which autonomous and
controlled state jumps are not permitted. First the results are
established in the hybrid Mayer optimal control problem setup
using the needle variation technique, and then the results for
the hybrid Bolza optimal control problem are established via
the calculus of variations methodology.

I. INTRODUCTION

There is now an extensive literature on the optimal
control of hybrid systems (see e.g. [1], [2], [3], [4], [5],
[6], [7], [8], [9]). With the exception of the variational
inequality in [8] and the work in [9], [10], the results and
methods in this body of work consist of generalizations
of the Pontryagin Maximum Principle (PMP). A feature of
special interest in these analyses is the boundary conditions
on adjoint processes and the Hamiltonian function at au-
tonomous and controlled switching times and states; these
boundary conditions may be viewed as a generalization
to the optimal control case of the Erdmann-Weierstrass
conditions of the calculus of variations. As is well known,
Dynamic Programming (DP) provides sufficient conditions
for optimality based upon the Principle of Dynamic Pro-
gramming, which in the standard non-hybrid case, and
under the assumption of smoothness of the value function,
results in the celebrated Hamilton-Jacobi-Bellman (HJB)
equation [11]. In the case of non-smooth value functions,
the so-called viscosity solutions [9] give a general class of
solutions to the HJB equation. Those hybrid optimal con-
trol problems (with autonomous or controlled switchings)
where switching incurs costs constitute a class of problems
which have been the subject of only limited study. In fact
the value function for hybrid systems with switching costs
will not in general be smooth at the switching instants, and
hence viscosity solutions are studied in [9], [10], where
switching costs are a function of switching state. In this
paper, the relationship between the Hamiltonian and the
adjoint process before and after switching instants with
costs is determined for hybrid systems which are general
except for the restriction that autonomous and controlled

state jumps are not permitted. These results are expressed
in the Hybrid Minimum Principle (HMP) framework in
this paper and a consecutive work will be studied in the
Dynamic Programming framework.

II. PROBLEM FORMULATION

To simplify the analysis, necessary optimality conditions
are only presented in this paper for trajectories with a
single switching event; however the results may be gen-
eralized (as for instance in [3]) to optimal trajectories with
several switching events by iterating the proof procedure
backwards in time along the trajectory from the terminal
instant.

A. Basic Assumptions

Consider a hybrid system (structure) H

H = {H := Q× Rn, I,Γ, A, F,M} (1)

with the following properties:
Q = {1, 2, . . . , |Q|} ≡ {qj}j∈Q is the finite set of

discrete states (components).
H = Q × Rn is the (hybrid) state space of the hybrid

system H.
I = Σ × U is the set of system input values with Σ

being the set of autonomous and controlled transition labels
extended with the identity element such that σi,j ∈ Σ for
i ∈ Q only if j ∈ A (i)
U ⊂ Rm is the set of admissible input control values,

where U is an open bounded set in Rm.
The set of admissible input control functions is taken

to be U (U) := L∞ ([t0, T∗) , U), which is the set of
all measurable functions that are bounded up to a set
of measure zero on [t0, T∗) , T∗ < ∞. The boundedness
property necessarily holds since admissible input functions
take values in the open bounded set U which has compact
closure Ū .

Γ : H×Σ→ H is a time independent (partially defined)
discrete (state) transition map which is the identity on the
second (Rn) component of H .
A : Q× Σ→ Q is such that A (qi, σi,j) = qj .
F = {fj}j∈Q is the collection of vector fields such that

fj ∈ Ck (Rn × U → Rn) , k ≥ 1 satisfies a uniform (in
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x) Lipschitz condition, i.e. there exists Lf < ∞ such that
‖fj (x1, u)− fj (x2, u)‖ ≤ Lf ‖x1 − x2‖, x1, x2 ∈ Rn,
u ∈ U , j ∈ Q. We also assume that there exists Kf < ∞

such that max
j∈Q

(
sup
u∈U

(‖fj (0, u)‖)
)
≤ Kf .

M = {mi,j (x) = 0 : i, j ∈ Q} is a switching manifold,
also called guard, such that mi,j is a smooth, i.e. C∞

codimension 1 sub-manifold of Rn.
The initial state h0 := (q0, x (t0)) ∈ H is such that

m (x0) 6= 0.
A hybrid system with a single switch from q1 ∈ Q to

q2 ∈ Q at the time ts ∈ (t0, tf ) has a representation in the
form

ẋq1 (t) = fq1 (xq1 (t) , u (t)) , a.e. t ∈ [t0, ts)

ẋq2 (t) = fq2 (xq2 (t) , u (t)) , a.e. t ∈ [ts, tf ]

subject to

h0 = (q1, xq1 (t0)) = (q1, x0)

xq2 (ts) = lim
t↑ts

xq1 (t)

u (t) ∈ U ⊂ Rm

u (.) ∈ L∞ ([t0, tf ) , U)

If the discrete control switching input σq1,q2 is a con-
trolled switching, the time ts may be selected on [t0, tf ]
without any constraint, while in the autonomous switching
case it must occur when the condition m (xs (ts)) = 0 is
satisfied.

B. The Hybrid Optimal Control Problem

Let {lj}j∈Q , lj ∈ Cnl (Rn × U → R+) , nl ≥ 1, be a
family of cost functions; c ∈ Cnc (Rn → R+) , nc ≥ 1,
be the switching cost function; and g ∈
Cng (Rn → R+) , ng ≥ 1, be a terminal cost function
satisfying the following:

There exists Kl < ∞ and 1 ≤ γl < ∞ such that
|lj (x, u)| ≤ Kl (1 + ‖x‖γl), x ∈ Rn, u ∈ U, j ∈ Q.

There exists Kc < ∞ and 1 ≤ γc < ∞ such that
|c (x)| ≤ Kc (1 + ‖x‖γc), x ∈ Rn.

There exists Kg < ∞ and 1 ≤ γg < ∞ such that
|g (x)| ≤ Kg (1 + ‖x‖γg ), x ∈ Rn.

Consider the initial time t0, final time tf <∞, and initial
hybrid state h0 = (q0, x0). Let S = (ts, σi,j) be the hybrid
switching input and let I := (S, u) , u ∈ U , be the hybrid
input which, subject to the assumptions above, results in
a (necessarily unique) hybrid state process [3]. Define the
hybrid cost function as

J (t0, tf , h0; I) :=
´ ts
t0
lq1 (xq1 (s) , u (s)) ds

+
´ tf
ts
lq2 (xq2 (s) , u (s)) ds+ c (x (ts)) + g (xq2 (tf ))

(2)
Then the Hybrid Optimal Control Problem (HOCP) is

to find the infimum Jo (t0, tf , h0) over the family of input
trajectories {I}.

III. HMP SOLUTION TO THE HOCP
In this section, we first develop the results of the Hybrid

Minimum Principle (HMP) for the Mayer problem (i.e. with
l1 (x, u) = l2 (x, u) ≡ 0) and then extend the results for
the general case in Eq. (2) (also called the Bolza problem).
The theorems below are proved only in the the case of a
single switching hybrid system, but the results can easily be
extended to a general hybrid system with several switching
events by iterating the proof procedure backwards in time
along the trajectory from the terminal instant.

A. HMP for Mayer HOCPs

Theorem 1. Consider the hybrid system H with a single
switching on the switching manifold m with the Mayer
HOCP

J (t0, tf , h0; I) := c (x (ts)) + g (xq2 (tf )) (3)

and define

Hqi (x, λ, u) = λT fqi (x, u) , x, λ ∈ Rn, u ∈ U cpt, qi ∈ Q
(4)

1) Let Jo (t0, tf , h0) = inf
{I}

Jo (t0, tf , h0; I) be re-

alized at an infimizing control Io and trajectory{(
qo1, x

o
q1

)
,
(
qo2, x

o
q2

)}
.

2) Let ts, denote the switching time along the optimal
trajectory.

3) Assume that xo meets the switching manifold m
transversally subject to one switching

Then
(i) There exists a (continuous from the left), piece-

wise absolutely continuous adjoint process λo

satisfying

λ̇o1 = −∂Hq1 (xo, λo, uo)

∂x
, a.e. t ∈ (t0, ts) (5)

λ̇o2 = −∂Hq2 (xo, λo, uo)

∂x
, a.e. t ∈ (ts, tf ) (6)

with λo (t0) free and the following boundary
value conditions
• At the final time tf

λo (tf ) = ∇g (xo (tf )) (7)
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Fig. 1. Variation in uo and the corresponding perturbed trajectory

• If ts is a controlled switching time, then

λo (ts−) ≡ λo (ts) = λo (ts+)+∇c (xo (ts))
(8)

• If ts is an autonomous switching time satis-
fying m (x (ts)) = 0, then for some p ∈ R

λo (ts−) ≡ λo (ts)
= λo (ts+) +∇c (xo (ts)) + p∇m (xo (ts))

(9)
(ii) Along the optimal trajectory, the Hamiltonian

minimization conditions hold:

Hqo(t) (xo (t) , λo (t) , uo (t))
≤ Hqo(t) (xo (t) , λo (t) , v)
a.e. t ∈ [t0, tf ] , ∀v ∈ U

(10)

Proof: The proof is based on the fact that the cost
functional is minimized on the optimal trajectory and
hence, every needle variation results in an equal or a higher
value for it;

(i) First, consider a needle variation in the time interval
(ts, tf ).

uε (τ) =


uo (τ)

v

uo (τ)

if ts ≤ τ < t− ε
if t− ε ≤ τ < t

if t ≤ τ ≤ tf
(11)

This corresponds to a perturbed trajectory xε (τ) ; τ ∈
[t0, tf ]. The variation and the corresponding state response
are depicted in Fig. 1. Define

δxε (τ) := xε (τ)− xo (τ) (12)

then

δxε (τ) = xε (t− ε) +
´ τ
t−ε fq2 (xε (s) , uε (s)) ds

−xo (t− ε) +
´ τ
t−ε fq2 (xo (s) , uo (s)) ds

=
´ τ
t−ε [fq2 (xε (s) , uε (s))− fq2 (xo (s) , uo (s))] ds

The corresponding deviation δxε right after the pertur-
bation (at time t) can be computed as

δxε (t) = xε (t)− xo (t)

=
´ t
t−ε [fq2 (xε (s) , v)− fq2 (xo (s) , uo (s))] ds

Define
yε (τ) :=

1

ε
δxε (τ)

and
y (τ) := lim

ε→0

1

ε
δxε (τ) (13)

Hence

y (t) = lim
ε→0

1

ε

ˆ t

t−ε
[fq2 (xε (s) , v)− fq2 (xo (s) , uo (s))] ds

This gives (see [3])

y (t) = fq2 (xo (t) , v)− fq2 (xo (t) , uo (t)) (14)

After the perturbation, i.e. in the time interval τ ∈ [t, tf ]

δxε (τ) = δxε (t)+

ˆ τ

t

[
fq2

(
xε(s), u

o
(s)

)
− fq2

(
xo(s), u

o
(s)

)]
ds

For small enough ε, the following approximation holds

δxε (τ) = Φ2 (τ, t) δxε (t) +H.O.T

where Φj (τ, τ0) is the state transition matrix corresponding
to the system

d

dτ
z (τ) =

∂

∂x
fqj (xo (τ) , uo (τ)) z (τ)

.
This gives

y (tf ) = lim
ε→0

yε (tf )

= Φ2 (tf , t) [fq2 (xo (t) , v)− fq2 (xo (t) , uo (t))]
(15)

Now, since xo is an optimal trajectory, we have

g (xε (tf )) + c (xε (ts)) ≥ g (xo (tf )) + c (xo (ts)) (16)

But since the perturbation at t ∈ (ts, tf ) does not change
the trajectory in [t0, ts] and the switching point xε (ts) =
xo (ts), we can write

g (xε (tf )) = g (xo (tf ) + εyε (tf )) ≥ g (xo (tf ))

Dividing by ε

1

ε
[g (xo (tf ) + εyε (tf ))− g (xo (tf ))] ≥ 0

Taking the limit as ε→ 0

1

ε

[
g (xo (tf )) + ε (∇g (xo (tf )))

T
yε (tf )− g (xo (tf ))

]
≥ 0
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Fig. 2. Autonomous switching case: variation in uo and the correspond-
ing perturbed trajectory

or

(∇g (xo (tf )))
T
y (tf ) ≥ 0 (17)

Replacing y (tf ) by its value, we get

(∇g (xo (tf )))
T

Φ2 (tf , t) fq2 (xo (t) , v)

≥ (∇g (xo (tf )))
T

Φ2 (tf , t) fq2 (xo (t) , uo (t))
(18)

Setting

λT2 (t) = (∇g (xo (tf )))
T

Φ2 (tf , t) t ∈ [ts, tf ]

we obtain
λ2 (tf ) = ∇g (xo (tf )) (19)

and

λ̇2 (t) = −
(
∂fq2
∂x (xo (t) , uo (t))

)T
ΦT2 (tf , t)∇g (xo (tf ))

= −
(
∂fq2
∂x (xo (t) , uo (t))

)T
λ2 (t) = −∂H2

∂x

(20)
(ii) Now consider a needle variation in the time interval

(t0, ts). This causes a change in the switching time as the
perturbed trajectory does not necessarily hit the switching
manifold at time ts. If the trajectory arrives on the switching
manifold earlier (say ts − δε), then the perturbed system
switches to the discrete state q2 earlier while the optimal
trajectory is still at q1. Hence, the control input uε for the
perturbed trajectory is taken to be as (also see Fig. 2)

uε (τ) =



uo (τ)

v

uo (τ)

uo (ts)

uo (τ)

if t0 ≤ τ < t− ε
if t− ε ≤ τ < t

if t ≤ τ < ts − δε

if ts − δε ≤ τ < ts

if ts ≤ τ ≤ tf

(21)

The case where the trajectory hits the switching manifold
at a later time can be handled similarly.

Similar to the previous part

δxε (t) =

ˆ t

t−ε
[fq1 (xε (s) , v)− fq1 (xo (s) , uo (s))] ds

results in

y (t) = fq1 (xo (t) , v)− fq1 (xo (t) , uo (t)) (22)

and hence, at ts − δε we may write

δxε (ts − δε) = Φ1 (ts − δε, t) δxε (t) +H.O.T

giving

y (ts−) = lim
ε→0

1

ε
δxε (ts − δε) = Φ1 (ts, t) y (t) (23)

Then at ts

δxε (ts) = δxε (ts − δε)
+
´ ts
ts−δε [fq2 (xε (s) , uo (ts))− fq1 (xo (s) , uo (s))]

gives

y (ts) = y (ts−)

+lim
ε→0

δε

ε [fq2 (xo (ts) , u
o (ts))− fq1 (xo (ts) , u

o (ts))]

or (see [3])

y (ts) = y (ts−) + qs∇m (xo (ts))
T
y (ts−) f21 (24)

with

f21 = [fq2 (xo (ts) , u
o (ts))− fq1 (xo (ts) , u

o (ts))]

and
qs =

1

∇m (xo (ts))
T
fq1 (xo (ts) , uo (ts))

Note that the denominator in the above expression is
nonzero, due to the transversality assumption. From there,
y (tf ) is computed by

y (tf ) = Φ2 (tf , ts) y (ts)

which gives

y (tf ) = Φ2 (tf , ts) [Φ1 (ts, t) y (t) + γs] (25)

with

γs = qs (∇m (xo (ts)))
T
y (ts−) f21

Now Eq. (16) becomes

1
ε [g (xo (tf ) + εyε (tf )) + c (xo (ts) + εyε (ts − δε))

−g (xo (tf ))− c (xo (ts))] ≥ 0
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Note that the perturbed system switches at the time ts−δε
and not ts. Expanding the above equation and taking the
limit as ε→ 0 we get

(∇g (xo (tf )))
T
y (tf )+(∇c (xo (ts)))

T
y (ts−) ≥ 0 (26)

Replacing the values of y (tf ) and y (ts−), the above
equation becomes

(∇g (xo (tf )))
T

Φ2 (tf , ts) Φ1 (ts, t) fq1 (xo (t) , v)

+p (∇m (xo (ts)))
T

Φ1 (ts, t) fq1 (xo (t) , v)

+ (∇c (xo (ts)))
T

Φ1 (ts, t) fq1 (xo (t) , v)
≥

(∇g (xo (tf )))
T

Φ2 (tf , ts) Φ1 (ts, t) fq1 (xo (t) , uo (t))

+p (∇m (xo (ts)))
T

Φ1 (ts, t) fq1 (xo (t) , uo (t))

+ (∇c (xo (ts)))
T

Φ1 (ts, t) fq1 (xo (t) , uo (t))
(27)

with

p = qs (∇g (xo (tf )))
T

Φ2 (tf , ts) f
2
1

For t ∈ [t0, ts) define

λ1 (t) := ΦT1 (ts, t) ΦT2 (tf , ts)∇g (xo (tf ))
+pΦT1 (ts, t)∇m (xo (ts))
+ΦT1 (ts, t)∇c (xo (ts))

(28)

We obtain

λ1 (ts−) = ΦT2 (tf , ts)∇g (xo (tf ))
+p∇m (xo (ts)) +∇c (xo (ts))

= λ2 (ts+) + p∇m (xo (ts)) +∇c (xo (ts))
(29)

Inserting (28) into (27) and remembering that
Hqj

(
xqj , λj , u

)
= λT fqj

(
xqj , u

)
, the Hamiltonian

minimization (10) is proved. Also, by taking the derivative
of (28) and noting that

d

dt
ΦTj (tj , t) = −

(
∂fj
∂x

(xo (t))

)T
ΦTj (tj , t)

we get

λ̇1 = −
(
∂fq1
∂x

(xo (t))

)T
λ1 = −∂H1

∂x
(30)

The proof of the controlled switching relation (8) is
obtained as a special case of the proof of the autonomous
switching relation (9) by a parallel argument where there
is no switching manifold, δε takes the value 0 and so do
qs and p.

B. HMP for Bolza HOCPs

For an explicit presentation of the main result in the case
where there exist running costs lqj (x, u) ≥ 0, we shall
establish the corresponding HOCP using the calculus of
variation methodology with the assumption of Small Time
Tubular Fountain (STTF) controllability property (see [3]).

Theorem 2. Consider the hybrid system H with the Bolza
HOCP with the same assumptions as in Theorem 1. In
addition, assume that almost every continuous state x on the
optimal trajectory xo (.) is a Small Time Tubular Fountain
(STTF) with respect to xo (.), and define the Hamiltonian
as

Hj (x, λ, u) = λT fqj (x, u) + lqj (x, u) (31)

x, λ ∈ Rn, u ∈ U, qj ∈ Q where U is an open bounded
set in Rm. Assume that the optimal control uo is such that
uo (t) ∈ U a.e. t ∈ [t0, tf ] and consider the optimal cost
function Jo = J (uo, ts)

J (uo, ts) =
´ ts
t0
l1 (xo, uo) dt+

´ tf
ts
l2 (xo, uo) dt

+c (xo (ts)) + g (xo (tf ))
(32)

Then for the optimal input and the corresponding optimal
trajectory xo, there exists an adjoint process λo for which

λ̇o = −∂Hi

∂x
(xo, λo, uo) , a.e. t ∈ [t0, tf ] , i ∈ Q (33)

λo (tf ) = ∇g (xo (tf )) (34)

λo (ts−) ≡ λo (ts) = λo (ts+) + p ∇m|x(ts) + ∇c|x(ts)
(35)

such that
∂Hqo

∂u
(xo, λo, u)

∣∣∣∣
u=uo

= 0 a.e. t ∈ [t0, tf ] (36)

and the Hamiltonian is continuous at the switching time,
i.e.

H1 (ts−) = H1 (ts) = H2 (ts) = H2 (ts+) (37)

Proof: Assume the adjoint process λ (.) is as defined
in equations (33), (34) and (35). Since f1 (xo, uo)− ẋo ≡ 0
for all t ∈ (t0, ts), f2 (xo, uo)− ẋo ≡ 0 for all t ∈ (ts, tf )
and m (xo (ts)) = 0, the optimal cost function (32) is equal
to

J (uo, ts) =
´ ts
t0

(
l1 (xo, uo) + λT (f1 (xo, uo)− ẋo)

)
dt

+
´ tf
ts

(
l2 (xo, uo) + λT (f2 (xo, uo)− ẋo)

)
dt

+pm (xo (ts)) + c (xo (ts)) + g (xo (tf ))

which gives
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J (uo, ts) =
´ ts
t0

(
H1 (xo1, λ1, u

o)− λT1 ẋo1
)
dt

+
´ tf
ts

(
H2 (xo2, λ2, u

o)− λT2 ẋo2
)
dt

+pm (xo (ts)) + c (xo (ts)) + g (xo (tf ))

(38)

Now consider a variational input δu such that uo+δuo ∈
U and ess sup[t0,tf ] |δuo| < δ. This will result in a new
state trajectory xo + δxo with a new switching time ts −
δts and switching state xs + δxs. Employing the standard
calculus of variation argument one obtains

0 ≤ δJo =
´ ts−δts
t0

∂H1

∂uo δu
odt+

´ tf
ts

∂H2

∂uo δu
odt

+
(
H1|t=ts−δts − H2|t=ts

)
δts

− λT1
∣∣
ts−δts

(
δxo1|ts−δts + ẋo1|ts−δts δts

)
+ λT2

∣∣
ts

(
δxo2|ts + ẋo2|ts δts

)
+p ∇m|ts δxs + ∇c|ts δxs +H.O.T

Noting the continuity relations and the definitions:

xo1|ts = xo2|ts (39)

(xo1 + δxo1)|ts−δts = (xo2 + δxo2)|ts−δts (40)

δxs := xo2|ts − xo1|ts−δts (41)

δxo1|ts−δts = (xo1 + δxo1)|ts−δts − xo1|ts−δts (42)

δxo2|ts = (xo2 + δxo2)|ts − xo2|ts (43)

and using the relations

δxs = δxo1|ts−δts + ẋ1|ts−δts δts (44)

and
δxs = δxo2|ts + ẋ2|ts δts (45)

(see [3]), the expression for δJo becomes

0 ≤ δJo =
´ ts−δts
t0

∂H1

∂uo δu
odt+

´ tf
ts

∂H2

∂uo δu
odt

+
(
H1|t=ts−δts − H2|t=ts

)
δts

+
(
− λT1

∣∣
ts−δts

+ λT2
∣∣
ts

+ p∇m+∇c
)
δxs +H.O.T

(46)
and this must hold for arbitrary variations δu0. Now by (35)
the coefficient of δxs vanishes to O (δ). Furthermore, by
the STTF hypothesis, the resulting variations can be made
to yield independent variations in δts and δu (see [3]), and
hence all the coefficients of the variational terms must be
equal to zero, which yields the result in the theorem for the
autonomous case.

The result in the controlled switching case is obtained as
a special case of the autonomous one by a parallel proof

method where there is no switching manifold and hence
p = 0.

Remark: Although the Small Time Tubular Fountain
(STTF) property was assumed in this theorem, the results
in [7] permits one to omit this condition in the absence of
switching costs.
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