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Abstract— Transmission is one of the crucial elements of the
driveline that affects vehicle fuel economy and comfort. It can
transfer power in different combinations of torque and speed.
This paper focuses on the modeling, simulation and control of a
two-speed transmission for electric vehicles which has seamless
gear shifting specification. The transmission incorporates two-
stage planetary gear sets and two braking mechanisms to
control the gear shifting. The dynamic model is developed by
using the kinematic equations of the planetary gear trains and
the Euler-Lagrange equations to derive the equations of motion.
The mathematical model is validated by using the SimDriveLine
library of MATLAB/Simulinkr. The controller design employs
optimal control methods to provide seamless shifting with
minimum transition time. Then, by relaxing ideal constraints, a
feasible controller is designed based on input-output and input-
state feedback linearization. Simulation results demonstrate the
ability of the proposed transmission to have smooth shifting
without excessive oscillations in the output torque and speed.

I. INTRODUCTION

Increasing fuel cost and environmental concerns have
pushed the automotive industry to gradually replace internal
combustion engine (ICE) vehicles with hybrid electric (HEV)
and fully electric vehicles (EV). However, the energy density
of electric batteries is much less than that of fossil fuels. So,
by changing the source of power from internal combustion
engine to electrical motor, it is required to minimize the
losses in the driveline in order to maximize the range of
EV’s. The transmission is one of the most important parts
of the driveline.

The most common types of transmissions of vehicles are
Manual Transmission (MT), Automated Manual Transmis-
sion (AMT), Automatic Transmission (AT), Dual Clutch
Transmission (DCT) and Continuously Variable Transmis-
sion (CVT) [1]. In general, the advantages of these trans-
missions can be classified as in Table I.

Most transmissions currently used for EV’s were initially
designed for ICE vehicles. Since ICE cannot operate below
certain speeds and their speed control during gear changes
is not an easy task, the presence of clutches or torque
convertors are inevitable for start ups, idle running and gear
changing. This, however, is not the case for EV’s as electric
motors are speed controllable in a wide range of operating
speeds. This difference provides an opportunity for designing
novel transmissions. In this paper a transmission is proposed
as an attempt to achieve all the required features of an
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ideal transmission for EVs. The proposed transmission is
comprised of a dual-stage planetary gear set with common
ring and common sun gears. The ratio of the pitch diameter
of the ring gear to the sun gear in the input and output sides
are different in order to have two different gear ratios. Two
friction brakes are used to control the flow of power during
gearshift to have a fast and smooth gear change. These two
friction brakes control the speed of the sun and the ring gears.
Fig.1 shows the schematic view of the proposed transmission.
According to Fig.1, the input of the transmission is the carrier
on the left hand side of the figure, which is directly attached
to an electric motor. The output of the mechanism is the
carrier on the right hand side which is attached to the load.
Two different gear ratios can be obtained by fixing the sun
or the ring gears. Furthermore, by controlling the brakes, the
gear shifting can be made seamless and without any torque
interruption. Here, for brevity, sun, ring and planets are used
instead of sun gear, ring gear and planet gears, respectively.

Since the set of efficient operating points for electric
motors is rich enough, multiplicity of gear numbers and
continuously variable transmissions (CVT)[2],[3] are not
necessary. The proposed transmission employs planetary gear
sets which have a high power density as the torque is
distributed over several gears [4]. This design shares the
benefits of DCT’s [5] and in addition, it is more compact
which makes it a better alternative to become a commer-
cial transmission. A feature of special interest in DCT is
the elimination of output torque interruptions during gear
changing, in contrast to AMT’s [6],[7],[8] where the driveline
is disengaged from and re-engaged to the traction motor or
engine which reduces passenger comfort and lifetime of the
synchronizer. Shift control in DCTs consists of two different
phases (the same as ATs [9]) called the torque phase and the
inertia phase. While a similar method can be implemented
on the proposed transmission, in this paper a control method
specific to the system’s model is developed.

TABLE I
ADVANTAGES OF DIFFERENT TRANSMISSIONS
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Fig. 1. Schematic view of the Two Speed Automated Transmission

II. KINEMATIC ANALYSIS OF THE PROPOSED
TRANSMISSION

A. Kinematic Equations

As the planetary gear trains are the main components of
the proposed transmission, the required kinematic equations
to derive the equations of motion are reviewed. The kine-
matic relations between planetary gear components such as
Carrier (C), Sun(S), Planets (P) and Ring (R) are [10]:

rRωR = rPωP + rCωC ; rR = rP + rC (1)

rCωC = rPωP + rSωS ; rC = rP + rS (2)

Where rS , rP and rR are the pitch radius of the sun, planet
and ring, respectively. The parameter rC is the radius of the
circle on which the planets are mounted. The parameters ωS ,
ωP , ωR and ωC are the angular velocity of the sun, planets,
ring and carrier, respectively. By eliminating ωP and rP from
(1) and (2), the kinematic relation between the Ring, Sun and
Carrier is as follows:

(rR + rS)ωC = rSωS + rRωR (3)

For simplification of the formulation, the ratio of the pitch
radius of the ring rR to the sun rS in the input and the output
of the transmission are considered as:

R1 := (
rR
rS

)
input

; R2 := (
rR
rS

)
output

(4)

It is obvious that R1 and R2 are greater than one because
the pitch radius of the ring is always greater than the sun’s.

During gear changing, the system has two degrees of
freedom. Hence, it is required to select two generalized
coordinates to derive the equations of motion. In this paper,
the generalized coordinates are chosen to be ωS and ωR and
all the angular velocities need to be expressed as functions
of ωS and ωR. From (1)-(4) it can be concluded that:

ωC,in =
R1ωR + ωS

(R1 + 1)
; ωC,out =

R2ωR + ωS
(R2 + 1)

ωP,in =
R1ωR − ωS

(R1 − 1)
; ωP,out =

R2ωR − ωS
(R2 − 1)

(5)

B. Gear Ratios

According to equations set (5), the speed ratio of the input
of the transmission to the output can be expressed as follows:

ωC,out
ωC,in

=
(R1 + 1)(ωS +R2ωR)

(R2 + 1)(ωS +R1ωR)
(6)

According to (6), three different gear ratios are achievable:
1) If the ring is completely grounded (ωR = 0):

ωC,out
ωC,in

=
(R1 + 1)

(R2 + 1)
= GR1 (7)

2) If the sun is completely grounded (ωS = 0):

ωC,out
ωC,in

=
(R1 + 1)R2

(R2 + 1)R1
= GR2 (8)

3) If neither sun nor ring are completely grounded (ωR 6=
0 and ωS 6= 0):

ωC,out
ωC,in

=
(R1 + 1)(ωS +R2ωR)

(R2 + 1)(ωS +R1ωR)
= GRT (9)

Here, GR1 and GR2 are considered as the first and the
second gear ratios where GRT is the transient gear ratio from
the first gear ratio to the second one during gear shifting.
Even though the gear ratios are dependent, it is possible to
solve (7) and (8) for R1 and R2 in order to get the desired
GR1 and GR2.

III. DYNAMIC MODELING AND VALIDATION

The vector of independent generalized coordinates q, is
considered as q = [ωS ωR]T . The Euler-Lagrange equations
for a minimum set of generalized coordinates are as follows:

d

dt
(
∂L

∂q̇k
)− ∂L

∂qk
= Qappl,nck (10)

Where L = T − V is the Lagrangian, T is the total kinetic
energy and V is the total potential energy of the system.

By considering the centre of mass of the system as the ref-
erence point for the gravitational energy and by considering
all the mechanical parts rigid, the total potential energy of
the system becomes zero (V = 0). The kinetic energy of the
system consists of the kinetic energy of the input and output
carriers, ring, sun, input and output planets as follows:

T =

Input Carrier︷ ︸︸ ︷
1

2
IC,inω

2
C,in +

Output Carrier︷ ︸︸ ︷
1

2
IC,outω

2
C,out +

Ring Gear︷ ︸︸ ︷
1

2
IRω

2
R

+

Sun Gear︷ ︸︸ ︷
1

2
ISω

2
S +

Four Input P lanet Gears︷ ︸︸ ︷
4(

1

2
IP,inω

2
P,in +

1

2
mP,inr

2
C,inω

2
C,in)

+

Four Output P lanet Gears︷ ︸︸ ︷
4(

1

2
IP,outω

2
P,out +

1

2
mP,outr

2
C,outω

2
C,out)

(11)

where IC,in, IC,out, IS , IR, IP,in and IP,out are the moment
of inertia of the input carrier, output carrier, sun, ring, input
planets and output planets, respectively. mP,in and mP,out

are the mass of the input and output planets. Now, all the
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other velocities should be written as functions of these two
general coordinates (ωR and ωS) as the following:

T =
1

2
(IC,in + 4mP,inr

2
C,in)

ωC,in︷ ︸︸ ︷
(
ω2
S +R2

1ω
2
R + 2R1ωRωS

(R1 + 1)2
)

+
1

2
(IC,out + 4mP,outr

2
C,out)

ωC,out︷ ︸︸ ︷
(
ω2
S +R2

2ω
2
R + 2R2ωRωS

(R2 + 1)2
)

+ 4{1

2
IP,in

ωP,in︷ ︸︸ ︷
(
ω2
S +R2

1ω
2
R − 2R1ωRωS

(R1 − 1)2
)}+

1

2
ISω

2
S

+ 4{1

2
IP,out

ωP,out︷ ︸︸ ︷
(
ω2
S +R2

2ω
2
R − 2R2ωRωS

(R2 − 1)2
)}+

1

2
IRω

2
R

(12)
By using the Euler-Lagrange equations, the equations of
motion for the two generalized coordinates q = [ωS ωR]T

can be written as follows:

ω̇S =
1

a
(TBSτ − TBRλ− ωSCSτ + ωRCRλ+ cTM

+ dTload + TSfτ − TRfλ)

ω̇R =
1

a
(TBRγ − TBSλ+ ωSCSλ− ωRCRγ + eTM

+ fTload + TRfγ − TSfλ
(13)

Where the coefficients are:

γ = [α+ β + IS +
4IP,in

(R1 − 1)2
+

4IP,out
(R2 − 1)2

]

λ = [αR1 + βR2 −
4IP,inR1

(R1 − 1)2
− 4IP,outR2

(R2 − 1)2
]

τ = [αR2
1 + βR2

2 + IR +
4IP,inR

2
1

(R1 − 1)2
+

4IP,outR
2
2

(R2 − 1)2
]

a = (γτ − λ2); c =
τ −R1λ

R1 + 1
; d =

τ −R2λ

R2 + 1

e =
γR1 − λ
R1 + 1

; f =
γR2 − λ
R2 + 1{

α = (IC,in + 4mP,inr
2
C,in)/(R1 + 1)2

β = (IC,out + 4mP,outr
2
C,out)/(R2 + 1)2

where CS , CR, TSf and TRf are related to the Coulomb
and viscous friction of the transmission and can be mea-
sured from experimental tests. Dynamics of the load can be
determined from longitudinal dynamics of vehicle and be
expressed as the following function [11]:

Tload = I(ωC,out, φ, Cd, Cr, A) (14)

where φ is the road angle, Cd is the aerodynamic drag
coefficient, Cr is the rolling resistance coefficient and A is
the frontal area. A model of the proposed transmission has
been built in MATLAB/Simulinkr by using SimDriveLine
to validate the performance of controllers which are design
in the next sections.

IV. CONTROLLER DESIGN

In this section, ideal and feasible controllers are presented.
The control variables are TM , TBS and TBR and the ob-
jectives are constant output speed and output torque during
the gear change as well as smooth gear ratio control and
avoidance of power interruption during gear shifting process.
The optimal controller is designed based on the representa-
tion of the desired objectives as mathematical constraints.
The feasible controller is then derived by relaxation of the
mathematical constraints from equalities to controlled values.

A. Ideal Controller

As explained earlier, the main control objectives is to
provide constant output speed and torque while minimizing
the shifting time during gear changing process. Here, (13) is
represented as:

[
ω̇S
ω̇R

]
= 1

a

[
−CSτ CRλ
CSλ −CRγ

] [
ωS
ωR

]
+ 1
a

[
τ −λ c
−λ γ e

] TBS
TBR
TM


+ 1
a

[
τ −λ d
−λ γ f

] TSf
TRf
Tload


(15)

Given that TSf and TRf have known fixed values and
Tload is known from (14), the above system can easily
be shown to be controllable. In addition, since the output
speed is geometrically related to the car’s speed, which is
continuously measured, the system is also observable as the
observability matrix for the following output equation has a
full rank.

ωC,out =
[

1
R2+1

R2

R2+1

] [ ωS
ωR

]
(16)

The objective of the control is to go from one gear to
another (i.e. from (7) to (8) through (9) and vice versa) by
means of engaging and releasing the brakes. Thus initial and
terminal conditions (15) can be expressed as

[
ωS

ωR

]
=

[
ωS (GR1)

0

]
upshift



downshift

[
ωS

ωR

]
=

[
0

ωR (GR2)

]
(17)

As mentioned in the control objectives, it is desired to
maintain the output speed and output torque during the gear
change. This requirement is ideally interpreted as

ω̇C,out = 0⇒ ω̇R =
−1

R2
ω̇S (18)

Substituting (18) in (15) gives:

(λR2 − τ) (CSωS − TBS)− (γR2 − λ) (CRωR − TBR)
+ (c+ eR2)TM − (λR2 − τ)TSf + (γR2 − λ)TRf

+ (d+ fR2)Tload = 0
(19)
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This constraint reduces the number of independent control
inputs to two, giving the third input as a dependent variable
to maintain the speed. Taking

TM = 1
c+eR2

[ λR2 − τ λ− γR2

] [ TBS
TBR

]
+
[

(τ − λR2)CS (γR2 − λ)CR
] [ ωS

ωR

]
+ (λR2 − τ)TSf − (γR2 − λ)TRf − (d+ fR2)Tload


(20)

equation (15) can be written as

[
ω̇S
ω̇R

]
= 1

a(c+eR2)

[ (de− cf)R2

cf − de

]
Tload

+

[
− (eτ + cλ)CSR2 (eλ+ cγ)CRR2

(eτ + cλ)CS − (eλ+ cγ)CR

] [
ωS
ωR

]
+

[
(eτ + cλ)R2 − (eλ+ cγ)R2

− (eτ + cλ) eλ+ cγ

] [
TBS
TBR

]
+

[
(eτ + cλ)R2 − (eλ+ cγ)R2

− (eτ + cλ) eλ+ cγ

] [
TSf
TRf

]
(21)

which meets the requirement (18). The system (21) is not
controllable, as the top row in its controllability matrix is
−R2 times the second row and hence is of rank 1. This is due
to the geometrical constraint (16) between state components
when ωC,out is fixed. Substituting (16) into (21) gives

ω̇S = 1
a(c+eR2)

(
− [(eτ + cλ)CSR2 + (eλ+ cγ)CR]ωS

+ (eτ + cλ)R2TBS − (eλ+ cγ)R2TBR
+ (1 +R2) (eλ+ cγ)CRωC,out + (de− cf)R2Tload

+ (eτ + cλ)R2TSf − (eλ+ cγ)R2TRf

)
(22)

For ease of notation, define

AS :=
(eτ + cλ)CSR2 + (eλ+ cγ)CR

a (c+ eR2)
,

BS1 :=
(eτ + cλ)R2

a (c+ eR2)
, BS2 :=

(eλ+ cγ)R2

a (c+ eR2)

GS := 1
a(c+eR2)

(
(1 +R2) (eλ+ cγ)CRωC,out

+ (de− cf)R2Tload + (eτ + cλ)R2TSf

− (eλ+ cγ)R2TRf

)
Thus (22) becomes

ω̇S = −ASωS +BS1TBS −BS2TBR +GS (23)

with the initial and the terminal conditions from (33)

ωS (0) = ωS (GR1) , ωS (tf ) = 0 (24)

for the upshift process. The reverse order for the initial and
final conditions hold for the downshift process. Note that
ωR can either be computed from the geometrical constraint
(16) or its differential equation which is dependent on the
dynamics of ωS .

In order to determine the admissible set for the control
inputs, note that the brake of the sun is designed to be of
the multi-plate clutch type. Thus, the relation between the
normal applied force on the clutch plates and the resulting
torque is:

TBS = −µPNBS n(
2

3
)(
R3
o −R3

i

R2
o −R2

i

)sign(ωS); NBS ≥ 0

(25)
where µP is the coefficient of friction between clutch plates,
NBS is the normal brake applied to the plates and n is the
number of the plates. The brake of the ring is designed to
be of band brake type. So, the relation between the normal
applied force at the end of the band and the resulting torque
is: {

TBR = −NBRRD(eµDθ − 1);ωR ≥ 0, NBR ≥ 0

TBR = NBRRD(1− e−µDθ);ωR < 0, NBR ≥ 0
(26)

where NBR is the force applied at the end of the band, RD is
the radius of the drum brake, µD is the coefficient of friction
between band and drum and θ is the angle of wrap.

For the band brake the positive direction of rotation is
considered as the energizing mode of the band brake and
the negative direction as de-energizing one.

For changing the gear ratio smoothly and gradually, it is
desired that the angular velocity of the sun gear goes to zero
without any overshoot. At the beginning of the gear change,
the speed of the sun gear is positive. By applying the normal
brake of the sun, according to (25), the braking torque of the
sun becomes negative. Furthermore, as the speed of the sun
goes to zero gradually and the output speed is controlled to
be constant, according to (5), the speed of the ring goes to
a certain positive value. So, from (26) by applying a normal
brake force, the brake torque of the ring becomes negative
and it can be concluded that:

− |TmaxBS | ≤ TBS ≤ 0, − |TmaxBR | ≤ TBR ≤ 0 (27)

In order to design the Minimum Shifting-Time Controller,
the Pontryagin Minimum Principle is employed and the
Hamiltonian for the system (23) is formed as

H (ωS , p, TBS , TBR) =
1 + p (−ASωS +BS1TBS −BS2TBR +GS)

(28)

The Minimum Principle states that along the optimal
trajectory ωoS there exists po such that

ṗo = −∂H (ωS , p
o, TBS , TBR)

∂ωS
= poAS (29)

and

H (ωoS , p
o, T oBS , T

o
BR) ≤ H (ωoS , p

o, TBS , T
o
BR) (30)
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for all − |TmaxBS | ≤ TBS ≤ 0, and

H (ωoS , p
o, T oBS , T

o
BR) ≤ H (ωoS , p

o, T oBS , TBR) (31)

for all − |TmaxBR | ≤ TBR ≤ 0.
Since this is a fixed terminal value problem, the terminal

value for the adjoint process is free. Solving (29) results in

po (t) = po (τ) eAs(τ−t) (32)

with τ being the first time that the terminal condition in
(24) occurs after ts when the shifting begins. If po (τ) < 0
then po (t) < 0 for all t ∈ [ts, τ ] and the Hamiltonian
minimization (30) gives T oBS = 0 and (31) gives T oBR =
− |TmaxBR |. This corresponds to the exponential growth of ωS
which is not desirable in the upshift process. If po (τ) > 0
then po (t) > 0 for all t ∈ [ts, τ ] and the Hamiltonian
minimization (30) gives T oBS = − |TmaxBS | and (31) gives
T oBR = 0. This case indeed gives the solution to the
minimum time problem for upshift. Having established the
optimal values for TBR and TBS , the motor torque is
calculated from (20).

B. Feasible Controller

The ideal controller requires sudden engagement and re-
lease of the brakes which is beyond the actuators’ limits. In
addition, gear ratio variations for the optimal controller is
not smooth at the beginning and the end of shifting. Thus,
the constraint (18) is relaxed in order to provide additional
flexibility for the controller to meet these requirements. It
is shown, however, that the feasible controller is still able
to provide nearly constant output velocity and output torque
while the controller commands lie within physical constraints
of the system. Taking the derivative of (5) with substitution
of (13) results in

ω̇C,out = TBS(
τ − λR2

a(R2 + 1)
) + TBR(

γR2 − λ
a(R2 + 1)

)

+ωSCS(
λR2 − τ
a(R2 + 1)

) + ωRCR(
λ− γR2

a(R2 + 1)
)

+TM (
c+ eR2

a(R2 + 1)
) + TLoad(

d+ fR2

a(R2 + 1)
)

+TSf (
τ − λR2

a(R2 + 1)
) + TRf (

γR2 − λ
a(R2 + 1)

)

(33)

Since Tload ia a nonlinear function, input-output feedback
linearization method is used by selecting TM as follow:

TM =
−1

c+ eR2

[
(τ − λR2)TBS + (γR2 − λ)TBR

+(CSλR2 − CSτ)ωS + (CRλ− CRγR2)ωR

+(d+ fR2)Tload + (τ − λR2)TSf + (γR2 − λ)TRf

−Ka(R2 + 1)

c+ eR2
(ωC,out − ωC,outD )

] (34)

where ωC,outD is the desired output speed of the transmission
which is considered to be constant during the gear change.
Thus (33) becomes:

ω̇C,out = −K(ωC,out − ωC,outD ) (35)

where K is the controller gain. This ensures the stability
of the output speed and exponential convergence of the
error (ωC,out − ωC,outD ) to zero without any overshoot. As
mentioned before, the control inputs for this problem are TM ,
TBS and TBR. From (34), the input control TM is given as
a function of TBS and TBR. Substituting TM in the first
equation of (13), it is concluded that:

ω̇S =
1

a(c+ eR2)
[−(eτ + cλ)CSR2ωS + (eλ+ cγ)CRR2ωR

+(eτ + cλ)R2TBS − (eλ+ cγ)R2TBR

+(de− cf)R2Tload + (eτ + cλ)R2TSf

−(eλ+ cγ)R2TRf − cK(R2 + 1)(ωC,out − ωC,outD )]
(36)

Define:

∆ :=
1

a(c+ eR2)
[−(eτ + cλ)CSR2ωS + (eλ+ cγ)CRR2ωR

+(de− cf)R2Tload + (eτ + cλ)R2TSf

−(eλ+ cγ)R2TRf − cK(R2 + 1)(ωC,out − ωC,outD )]
(37)

If ∆ ≥ 0 take

TBS =
−a(c+ eR2)

eτ + cλ
[∆− (eλ+ cγ)R2TBR

+P (ωS − ωSD
) + ω̇SD

]
(38)

and if ∆ < 0 take

TBR =
−a(c+ eR2)

eλ+ cγ
[∆ + (eτ + cλ)R2TBS

+P (ωS − ωSD
) + ω̇SD

]

(39)

where P is the controller gain and TBS and TBR are
desired to follow their corresponding values in the ideal
control strategy while satisfying the actuator limitations. This
ensures the exponential convergence of ωS to the desired
trajectory in the form of ω̇S = −P (ωS − ωSD

) + ω̇SD
.

V. SIMULATION RESULTS

For the proposed transmission with parameters given in
Table II, simulation results are provided for a sample upshift
process. Fig.2-Fig.5 illustrate the results for the feasible
controller. The gear changing process starts at t = 20 s and
lasts about 1.5 s for the feasible controllers. As it can be seen
in Fig.3 sudden engagement and disengagement of the on-
going an off-going brakes are replaced by feasible variations

Fig. 2. Angular Velocities of the Input,Output, Ring and Sun
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Fig. 3. Normal Braking Forces of the Ring and Sun

of the normal brake forces (normal brake forces can be
calculated from (25) and (26)). As it can be observed in Fig.4
this corresponds to lower peak values for the motor torque
in comparison with the ideal controller. Fig.2 demonstrates
the input and output speed of the transmission as well as
speeds of the ring and the sun gears. It can be seen that the
oscillation of the output speed and the output torque during
the gear change is almost negligible. Fig.5 demonstrates
the variation of the gear ratio during the gear changing
procedure.

TABLE II
PARAMETERS OF THE DYNAMIC SYSTEM

rR,in(m) 6e-2 IR(Kg.m2) 9e-3
rR,out(m) 6e-2 IS(Kg.m

2) 1.5e-3
rS,in(m) 3e-2 IC,in(Kg.m

2) 1.4e-3
rS,out(m) 15e-3 IC,out(Kg.m

2) 0.1
rP,in(m) 15e-3 IP,in(Kg.m

2) 6.08e-6
rP,out(m) 22.5e-3 IP,out(Kg.m

2) 3.12e-5
CR(N.m.s/rad) 0.001 mP,in(Kg) 0.0512
CS(N.m.s/rad) 0.001 mP,out(Kg) 0.12113
TRf (Nm) 0.05 TSf (Nm) 0.05
µR, µS 0.15 n 4
Ro(m) 0.09 Ri(m) 0.08
RD(m) 0.1 θ(rad) 3π/4

VI. CONCLUSION

In this paper, an analytical dynamic model of the proposed
two-speed automated transmission is presented and validated
by MATLAB/Simulinkr. An ideal controller is designed in
order to keep the output speed and torque constant during

Fig. 4. Motor Torque and Output Torque

Fig. 5. Gear Ratio

gear changes. In order to cope with the actuator limits, a
feasible controller is developed by relaxing the constraints
in design of the ideal controller. Simulation results show
that the oscillation of the output torque and output speed,
during the gear change, remains less than 5%. The proposed
transmission with the controller algorithm developed in this
paper provides seamless gearshifts, while the two embedded
brake systems help in the synchronization of the speed of
the motor with the driveline which reduces the shifting time.

Future work will be validating the proposed modeling
and control algorithm on the real testbed and improve the
controller to consider all the possible uncertainties and
disturbances.
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