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a b s t r a c t

Two novel numerical estimators are proposed for solving forward–backward stochastic differential
equations (FBSDEs) appearing in the Feynman–Kac representation of the value function in stochastic
optimal control problems. In contrast to the current numerical approaches, which are based on
the discretization of the continuous-time FBSDE, we propose a converse approach, namely, we
obtain a discrete-time approximation of the value function, and then we derive a discrete-time
estimator that resembles the continuous-time counterpart. The proposed approach allows for the
construction of higher accuracy estimators along with an error analysis. The approach is applied to
the policy improvement step in a reinforcement learning framework. Numerical results, along with the
corresponding error analysis, demonstrate that the proposed estimators show significant improvement
in terms of accuracy over classical Euler–Maruyama-based estimators. In the case of LQ problems,
we demonstrate that our estimators result in near machine-precision level accuracy, in contrast to
previously proposed methods that can potentially diverge on the same problems.

© 2023 Elsevier Ltd. All rights reserved.
1. Introduction

Feynman–Kac representation theory and its associated for-
ard–backward stochastic differential equations (FBSDEs) have
een gaining traction as a framework to solve nonlinear stochas-
ic optimal control problems, including problems with quadratic
ost (Exarchos & Theodorou, 2018), minimum-fuel (L1-running
ost) problems (Exarchos & Theodorou, 2018), differential games
Exarchos, Theodorou, & Tsiotras, 2018a), as well as reachability
roblems (Soner & Touzi, 2002). Although FBSDE-based methods
ave seen growing attention in both the controls and robotics
ommunities recently, much of the relevant research originated
n the mathematical finance community (Longstaff & Schwartz,
001; Ma & Yong, 2007).
The underlying foundation of Feynman–Kac-based FBSDE al-

orithms is the intrinsic relationship between the solution of
broad class of second-order parabolic or elliptic PDEs to the
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solution of FBSDEs (see, e.g., Yong & Zhou, 1999, Chapter 7),
brought to prominence in El Karoui, Peng, and Quenez (1997),
Pardoux and Peng (1990). Both Hamilton–Jacobi–Bellman (HJB)
and Hamilton–Jacobi–Isaacs (HJI) second order PDEs that are uti-
lized for the solution of, respectively, stochastic optimal control
and stochastic differential game problems, can thus be solved
via FBSDE methods, even when the dynamics are nonlinear and
the cost is non-quadratic. FBSDE methods thus provide an al-
ternative to the grid-based solution of HJB/HJI-type PDEs, typ-
ically solved using finite-difference, finite-element, or level-set
schemes, which are known for their poor scaling in high dimen-
sional state spaces (n ≥ 4).

Recently proposed methods (Exarchos & Theodorou, 2018;
Exarchos et al., 2018a) have suggested an iterative-FBSDE (iFB-
SDE) approach for solving stochastic optimal control problems,
where alternating forward sampling passes and backward value
function regression passes iteratively improve the approximation
of the optimal value function. While initial results demonstrate
promise in terms of flexibility and theoretical validity, iFBSDE
methods have not yet matured. For even modest problems, iFB-
SDE methods can be unstable, producing value function approx-
imations which quickly diverge. Thus, producing more robust
numerical methods for solving FBSDEs is critical for the broader
adoption of iFBSDE methods for real-world tasks.

The iFBSDE numerical methods broadly consist of two steps:
a forward pass, which generates Monte Carlo samples of the for-

ward stochastic process, and a backward pass, which iteratively
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pproximates the value function backwards in time. The value
unction approximation is performed using least-squares Monte
arlo (LSMC), which implicitly solves the backward SDE using
arametric function approximation (Longstaff & Schwartz, 2001).
he approximate value function fit in the backward pass is then
sed to improve the sampling in an updated forward pass, leading
o an iterative algorithm that improves the approximation till
onvergence.
Although at first glance iFBSDE methods seem similar to dif-

erential dynamic programming (DDP) techniques (Jacobson &
ayne, 1970), the approach is significantly different. DDP meth-
ds require first and second order derivatives of the dynamics,
nd directly compute a quadratic approximation of the value
unction using constraints on the derivatives of the value func-
ion. By comparison, iFBSDE only uses approximations of the
alue function at a distribution of states, using the derivative
f the value function to improve the accuracy of the estimator.
he iFBSDE methods are more flexible, in the sense that they do
ot require derivatives of the dynamics and can be used with
odels of the value function that are not necessarily quadratic.
urthermore, for most DDP applications, a quadratic running cost
ith respect to the control is required for appropriate regu-

arization whereas iFBSDE methods more easily accommodate
on-quadratic running costs (e.g., of the class L1 or zero-valued),
ending to a variety of control applications (Exarchos & Theodorou,
018).
In this work, we investigate the discrete-time approximation

f the backward SDE in the context of solving for the value
unction in the backward pass in stochastic optimal control FBSDE
ethods. Although for some special cases analytic solutions of

he backward SDEs over short intervals can be accommodated
nto the associated algorithms (Longstaff & Schwartz, 2001), for
any nonlinear problems analytic solutions are not available
nd numerical integration based on time-discretization is nec-
ssary. In the currently available algorithms in the literature,
uler–Maruyama approximations are employed for discretizing
he continuous-time FBSDEs (Exarchos & Theodorou, 2018), to
olve for an approximation of the continuous-time value function.
Instead of the direct application of the Euler–Maruyama ap-

roximation on the Feynman–Kac FBSDEs, we formulate a dis-
rete time problem with the Euler–Maruyama approximation
f the dynamics, cost, and value function, and then we derive
iscrete-time relationships using Taylor expansions that resemble
heir continuous-time counterparts. By doing so, we arrive at a
et of alternative estimators for the value function. The primary
ontributions of this paper are as follows:

• We propose a pair of alternative estimators for the value
function used in the backward pass of a Girsanov-drifted
Feynman–Kac FBSDE numerical method.

• We characterize the theoretical bias and variance of these
estimators and show their theoretic superiority to previ-
ously proposed estimators.

• We numerically confirm the theoretical results on represen-
tative stochastic optimal control problems.

This paper expands upon the authors’ prior work in Hawkins,
akniyat, and Tsiotras (2021), first by providing more details into
ow the proposed estimators are constructed, and second, by
roviding detailed proofs for the stated theorems. In addition,
e discuss how the methodology can be adapted to improve the
olicy in a reinforcement learning setting by computing a similar
pproximation of the Q-value function. Finally, we present new
esults of numerical experiments on a two-dimensional nonlin-
ar problem and a four-dimensional LQ problem, verifying our
heoretical claims about the accuracy of the proposed estimators.
2

2. Continuous-time Feynman–Kac FBSDEs

In this section, we introduce the ‘‘on-policy’’ value function
and show how its solution relates to the solution of a pair of
continuous-time forward–backward stochastic differential equa-
tions (FBSDEs).

2.1. On-policy value functions

Let µ(t, x) be a given bounded and measurable policy and let
f µ(t, x) := f (t, x, µ(t, x)) and ℓµ(t, x) := ℓ(t, x, µ(t, x)) refer to
the dynamics and the running cost associated with some optimal
control problem, respectively. The on-policy value function Vµ is
defined as

Vµ(t, x) = E[

∫ T

t
ℓµ
s ds + g(XT ) |Xt = x], (1)

with the process Xs satisfying the forward SDE (FSDE)

dXs = f µ
s ds + σs dWs, (2)

with initial condition X0 = x0, where f µ
s := f µ(s, Xs) and similarly

for ℓ
µ
s and σs, and where Ws is an n-dimensional standard Brow-

nian (Wiener) process. We assume that f µ, σ , ℓµ, g are uniformly
continuous in (t, x) and Lipschitz in x, and that σ−1 exists and is
uniformly bounded on its domain. Furthermore, we assume that
the PDE

∂tv +
1
2
tr(σσ⊤∂xxv) + f µ⊤∂xv + ℓµ

= 0,

g = v|t=T

(3)

has a classical solution, that is, the solution is continuously dif-
ferentiable in t , twice so in x, and satisfies Eq. (3) everywhere.1
A Feynman–Kac-type theorem (Yong & Zhou, 1999, Chapter 7,
Theorem 4.1) establishes that Vµ in (1) is this classical solution
to (3) and is the same for any Brownian process Ws (i.e., the FSDE
2) has a unique strong solution).

.2. Off-policy drifted FBSDE

If we sample from the trajectory distribution generated by the
SDE (2) with the on-policy drift term f µ

s we can easily arrive at
elationships which allow us to solve for Vµ either directly from
1) or via dynamic programming. Instead, we present a result that
hows that we can sample from an FSDE with a different drift
erm Ks, and then solve a system of drifted FBSDEs to obtain the
ame value function Vµ.

heorem 2.1. Let (Ω,F, {Ft}t∈[0,T ], P) be a filtered probability
pace on which W P

s is Brownian and let Ks be any Fs-progressively
easurable process on the interval [0, T ] such that Ds := σ−1

s (f µ
s −

s) satisfies Novikov’s criterion (EP[exp(1/2
∫ T
0 ∥Ds∥

2 ds)] < ∞) (Co-
en & Elliott, 2015, Theorem 15.4.2),2 and let

Xs = Ks ds + σs dW P
s , X0 = x0, (4)

admit a unique square-integrable solution Xs (see, e.g., Yong & Zhou,
1999, Chapter 1, Theorem 6.16). Then, the forward SDE (4) and the
backward SDE

dYs = −(ℓµ
s + Z⊤

s Ds) ds + Z⊤

s dW P
s , YT = g(XT ), (5)

1 The theory can be relaxed to the case where only viscosity solutions are
vailable, at the cost of a more technical analysis. For more details, please
ee Hawkins, Pakniyat, Theodorou, and Tsiotras (2020).
2 The notation E hereafter refers to the expectation taken in the measure P.
P
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Fig. 1. Illustration of the result of (6) for two separate applications of The-
orem 2.1 showing that the joint distribution (t, Xt , Yt ) lies on the surface
t, x, Vµ(t, x)). This holds regardless of whether the drift term is on-policy
Ks = f µ

s ) or off-policy (Ks ̸= f µ
s ).

ave a unique, square-integrable solution (Xs, Ys, Zs) such that

s = Vµ(s, Xs), s ∈ [0, T ],

Zs = σ⊤

s ∂xVµ(s, Xs), a.e. s ∈ [0, T ],
(6)

holds P-a.s. where Vµ is defined in (1). □

Proof. The existence of a square-integrable solution to (4) allows
the conditions of Yong and Zhou (1999, Chapter 7, Theorem 3.2)
to be satisfied for (5), guaranteeing a unique square-integrable
solution (Ys, Zs). Defining the process

WQ
t := W P

t −

∫ t

0
Ds ds, t ∈ [0, T ], (7)

Girsanov’s theorem guarantees that WQ
s is Brownian in some

measure Q (Fleming & Rishel, 1976, Chapter 5, Theorem 10.1).
With a simple algebraic reduction, Girsanov’s theorem also guar-
antees that Xs solves the FSDE (2) (where Ws = WQ

s ), and that
(Xs, Ys, Zs) solves the BSDE dYs = −ℓ

µ
s ds + Z⊤

s dWQ
s with YT =

(XT ). Moreover, Theorem 4.5 in Yong and Zhou (1999, Chapter 7)
stablishes that (6) holds Q-a.s., since Vµ is the solution of (3).
ovikov’s condition on Ds yields that P and Q are equivalent
easures (Lowther, 2010), and thus we can conclude that (6)
olds P-a.s. as well. ■

When the samples of the FSDE are drawn using an arbitrary
drift Ks instead of f µ

s , the latter associated with the target pol-
cy µ, we say that the FBSDE samples ‘‘off-policy’’. Off-policy
ampling is useful for numerical methods because one can ar-
itrarily sample in the forward pass, then solve for the value
unction Vµ associated with a target policy µ, where this policy
an be established during the backward pass. Fig. 1 illustrates
heorem 2.1. In the figure, Vµ is the optimal value function and
he cyan trajectories depict the optimal trajectory distribution.
hen approximating the unknown optimal value function, we

an begin with an approximate drift that generates the x com-
onent of the orange trajectory distribution.3 As we solve the
SDE backwards along this distribution for the y component of
he joint distribution (Xs, Ys), we obtain new approximations for
he optimal value function, and thus, new approximations for
he optimal policy. At the end of the backward pass we have
direct estimate of the yellow surface around the distribution
f the orange trajectories without ever having sampled from the

3 Colors are best viewed in the electronic version.
3

optimal policy. A subsequent iteration samples forward utilizing
a newly estimated policy.

Remark 2.1. For any given process K̂s and some large constant
C > 0, it is possible to construct a process Ks such that the
corresponding process Ds = σ−1

s (f µ
s − Ks) is a bounded process

nd, thus, satisfying Novikov’s condition and the assumption in
heorem 2.1. To be more specific, one can set

s =

{
K̂s, if ∥f µ

s − K̂s∥ < C,

K̃s otherwise,
(8)

with K̃s an arbitrary process satisfying ∥f µ
s −K̃s∥ < C; e.g., K̃s = f µ

s

r K̃s = −f µ
s +

(
C

∥f µs −K̂s∥
f µ
s − K̂s

)
, etc.

3. Forward–backward difference equations

In Exarchos and Theodorou (2018) the results of the contin-
uous-time FBSDE theory were reduced to a discrete-time ap-
proximation via the Euler–Maruyama method. In this section we
propose the converse approach: we begin by forming a discrete-
time approximation of the dynamics and the value function, then
we derive relationships that resemble those arrived at by taking
the Euler–Maruyama approximation of the FBSDE system (4)–(5).
In doing so, we make two contributions: first, we arrive at better
estimators compared to the direct discretization of the continu-
ous time relations because we are able to exploit characteristics
of the discrete-time formulation obscured by the continuous-time
problem, and, secondly, we provide a discrete-time intuition for
the continuous-time theory.

3.1. Discrete-time on-policy value function

The interval [0, T ] is partitioned into N subintervals of length
∆t with the partition {t0 = 0, t1 = ∆t, . . . , tN−1 = T − ∆t, tN =

}. We abbreviate the variables Xti =: Xi for brevity. Using the
uler–Maruyama method (Kloeden & Platen, 2013), let Fµ

i =

(ti, Xi, µi(Xi))∆t , Σi = σ (ti, Xi)(∆t)1/2, and Lµ

i = ℓ(ti, Xi, µi(Xi))
t , where µi(Xi) = µ(ti, Xi). The discrete-time on-policy value

function is

Vµ

i (x) = E[

N−1∑
j=i

Lµ

j + g(XN ) |Xi = x], (9)

for i = 0, . . . ,N where the discrete time process {Xj} obeys the
difference equation

Xj+1 − Xj = Fµ

j + ΣjWj, (10)

with initial condition Xi = x, where {Wj}
N−1
j=i is a standard discrete

time Brownian increment process, that is, Wj ∼ N (0, In) is
normally distributed, is Fj+1-measurable (for the given filtration
{Fj}j∈{i,...,N}), and {Wj} are mutually independent.

3.2. Drifted Taylor-expanded backward difference

We now offer a discrete-time approximation of the drifted
off-policy FBSDEs.

3.2.1. FSDE approximation
Overloading notation, let (Ω,F, {Fi}i∈{0,...,N}, P) be a discrete-

time filtered probability space whereW P
i is the associated Brown-

ian increment process. Define on this space the difference
equation

X − X = K + Σ W P, X = x , (11)
i+1 i i i i 0 0
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here the process {Ki}
N−1
i=0 is defined such that each Ki is

Fi-measurable and independent of W P
i . For example, Ki can be

constructed using the function Ki(ω) = Ki(Xi(ω), ξi(ω)), where
{ξi} is some random process where ξi is Fi-measurable and
independent of W P

i (but not necessarily independent of W P
i−1).

3.2.2. BSDE approximation
We define the ideal discrete-time BSDE process as {Yi :=

Vµ

i (Xi)} and the ideal backward difference as ∆Yi := Yi+1 − Yi.
or each backward step from i + 1 to i we assume we have an
pproximation Ṽµ

i+1 ≈ Vµ

i+1, twice differentiable, and we wish to
roduce an approximation Ṽµ

i ≈ Vµ

i using least-squares Monte-
arlo (LSMC) function regression (Longstaff & Schwartz, 2001).
e use two separate estimators, Ŷi+1 ≈ Yi+1 and ∆Ŷi ≈ ∆Yi, to
btain the combined estimator

i := Ŷi+1 − ∆Ŷi, (12)

ith the interpretation that Ŷi estimates Ṽµ

i (Xi) ≈ Vµ

i (Xi). Both
i+1 and ∆Ŷi can be chosen according to different approximation
chemes; these choices are investigated below.

.2.3. Taylor-based backward step approximator
Similar to the definition (7) in the proof of Theorem 2.1, we

efine the process
Q
i := W P

i − Di, i = 0, . . . ,N − 1, (13)

here Di := Σ−1
i (Fµ

i − Ki). A discrete-time version of Girsanov’s
heorem yields the existence of a measure Q under which the
rocess {WQ

i } is a Brownian increment process (Di Masi & Rung-
aldier, 1982, Theorem 1). By substituting this process into (11),
ote that {Xi} always satisfies the difference equation in (10)
here {WQ

i } is the Brownian increment process. Since the choice
f Brownian increment process is irrelevant to the definition of
he on-policy value function, if we use the expectation EQ in (9),
he solution to the off-policy drifted difference equation (11) can
e used as the process in the definition of the on-policy value
unction. It is easy to show that the on-policy value function Vµ

i
atisfies the Bellman equation4

µ

i (Xi) = Lµ

i + EQ[Vµ

i+1(Xi+1)|Xi, Ki]. (14)

he proposed backwards step estimator is a simplified form of

Ŷi = Ỹi+1 − (Lµ

i + EQ [̃Yi+1|Xi, Ki]), (15)

here Ỹi+1 is computed by a Taylor expansion to be introduced
hortly. Specifically, using the second-order Taylor expansion of
he function Ṽµ

i+1(Xi+1) ≈ Vµ

i+1(Xi+1) = Yi+1 centered at the
onditional mean of Xi+1 taken in the measure P, yields X

P
i+1 :=

EP[Xi+1|Xi, Ki] = Xi + Ki. Furthermore, we have that

Vµ

i+1(Xi+1) = Ṽµ

i+1(X
P
i+1 + ΣiW P

i ) = Ỹi+1 + δh.o.t.
i+1 , (16)

here,

i+1 := Y i+1 + Z
⊤

i+1W
P
i +

1
2
(W P

i )
⊤M i+1W P

i , (17)

nd Y i+1 := Ṽµ

i+1(X
P
i+1), Z i+1 := Σ⊤

i ∂xṼ
µ

i+1(X
P
i+1), M i+1 :=

Σ⊤

i ∂xxṼ
µ

i+1(X
P
i+1)Σi, and δh.o.t.

i+1 includes the third and higher or-
er terms in the Taylor series expansion. Substituting (13) into

4 Although the rightmost term in the Bellman equation typically appears as
Q[Vµ

i+1(Xi+1)|Xi], we can substitute in EQ[Vµ

i+1(Xi+1)|Xi, Ki] = EQ[Vµ

i+1(Xi+1)|Xi]

ecause Xi+1 is independent of Ki given Xi in the measure Q. Conditional
ndependence can be demonstrated by noting that EQ[1{(Xi+1,Ki)∈A×B}|Xi] =

[1 µ |X ]E [1 |X ].
Q {Xi+Fi +ΣiWQ
i ∈A} i Q {Ki∈B} i

4

17), then (17) into (15), and simplifying5 yields the proposed
stimator,

Ŷi := −Lµ

i + Z
⊤

i+1W
P
i − Z

⊤

i+1Di

+
1
2
tr

(
M i+1(W P

i (W
P
i )

⊤
− I − DiD⊤

i )
)
.

(18)

Lemma 3.1. The choice (18) yields the residual error

∆Yi − ∆Ŷi = δ∆Ŷ
i+1 − EQ[δ∆Ŷ

i+1|Xi, Ki], (19)

where, δ∆Ŷ
i+1 := Vµ

i+1(Xi+1)− Ṽµ

i+1(Xi+1)+δh.o.t.i+1 is the sum of the error
in approximation of Vµ

i+1(Xi+1) and the residual due to the Taylor
expansion.

Proof. The Taylor expansion (16) immediately gives Yi+1 = Ỹi+1+

δ∆Ŷ
i+1. Substituting into (15) yields ∆Ŷi = −Lµ

i + Yi+1 − δ∆Ŷ
i+1 −

Q[Yi+1 − δ∆Ŷ
i+1|Xi, Ki]. If we substitute Yi, Yi+1 into the Bellman

quation (14) we have Yi = Lµ

i +EQ[Yi+1|Xi, Ki]. After substituting
this expression into the previous equation and rearranging we
arrive at (19). ■

3.3. Estimators of Ŷi+1

We propose two potential estimators for Ŷi+1 ≈ Vµ

i+1(Xi+1).
irst, we propose using the value function approximation asso-
iated with the previous backward step to re-estimate the Ŷi+1
alues,
re-est
i+1 := Ṽµ

i+1(Xi+1). (20)

lternatively, we can also use the estimator
noiseless
i+1 := Ỹi+1, (21)

hich ends up cancelling out the terms with W P
i , so that (12)

educes to
noiseless
i = Lµ

i + Y i+1 + Z
⊤

i+1Di

+
1
2
tr

(
M i+1(I + DiD⊤

i )
)
. (22)

3.3.1. Error analysis
The following theorem establishes the error of the two esti-

mators.

Theorem 3.2. For the estimator Ŷi := Ŷi+1 − ∆Ŷi, where ∆Ŷi is
defined in (18) and Ŷi+1 is defined in (20) or (21), the bias is

EP[Yi − Ŷ re-est
i |Xi, Ki] = EQ[δ∆Ŷ

i+1|Xi, Ki]

− EP[δ
h.o.t.
i+1 |Xi, Ki], (23)

EP[Yi − Ŷ noiseless
i |Xi, Ki] = EQ[δ∆Ŷ

i+1|Xi, Ki]. (24)

Respectively, the variances of these estimators are

VarP [̂Y re-est
i |Xi, Ki] = VarP[δh.o.t.i+1 |Xi, Ki], (25)

VarP [̂Y noiseless
i |Xi, Ki] = 0. (26)

Proof. See Appendix A. ■

We call the estimation scheme used in Exarchos, Theodorou,
and Tsiotras (2018b) Euler–Maruyama-noiseless (EM-noiseless)
because it is arrived at by applying EM to the continuous-time
FBSDEs. The following proposition offers a comparative analysis.

5 Note that Di , Y i+1 , Z i+1 , and M i+1 , are (Xi, Ki)-measurable and thus come
out of the conditional expectations E [·|X , K ].
Q i i
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roposition 3.3. The bias of the EM-noiseless estimator Ŷ em-nless
i :=

µ

i+1(Xi+1) + Lµ

i + Z̃⊤

i+1Di, where Z̃i+1 := Σ⊤

i ∂xṼ
µ

i+1(Xi+1), has the
ollowing relationship with the Taylor re-estimate estimator bias,
P[Yi−Ŷ em-nless

i |Xi, Ki] = EP[Yi−Ŷ re-est
i |Xi, Ki]+

1
2D

⊤

i M i+1Di+h.o.t..
Moreover, the variance of the EM-noiseless estimator is greater than
the Taylor estimator, VarP [̂Y em-nless

i |Xi, Ki] ≥ VarP [̂Y re-est
i |Xi, Ki] +

∥Z i+1 + M i+1Di∥
2.

Proof. See Appendix B. ■

The addition of the 1
2D

⊤

i M i+1Di term to the bias makes the EM
estimator generally more biased than the Taylor estimator. This
observation is made more precisely in the following proposition.

Proposition 3.4. If the error in the approximation of Vµ

i+1(Xi+1)
and the third and higher order terms in the Taylor expansions of
Vµ

i+1(Xi+1) and ∂xṼ
µ

i+1(Xi+1) are all relatively small in magnitude
compared to |

1
2D

⊤

i M i+1Di|, the bias of the EM-noiseless estimator
is greater than the bias of the Taylor estimator, that is,

|EP[Yi − Ŷ em-nless
i |Xi, Ki]| ≥ |EP[Yi − Ŷ re-est

i |Xi, Ki]|.

roof. See Appendix C. ■

It is worth remarking that neither of the two estimators are
nbiased estimators but, as established in Proposition 3.3, the
roposed Taylor estimator yields a smaller variance compared
o the EM-noiseless estimator. Notice that Di := Σ−1

i (Fµ

i − Ki)
is a consequence of the difference between the selection of K
for forward sampling and the drift associated with the policy of
interest µ. Therefore, if D = 0 (i.e., if K is always selected to
be Fµ) the estimators have the same bias (while the proposed
Taylor estimator always yields a smaller variance). However, in
order to compare the two biases when D ̸= 0, one needs to first
fix other parameters of the underlying computational algorithm.
In particular, the error in the approximation of Vµ

i+1(Xi+1) and
the third and higher order terms in the Taylor expansions of
Vµ

i+1(Xi+1) and ∂xṼ
µ

i+1(Xi+1) depend on several factors including
the number of samples, the granularity of time discretization,
and the selection of basis functions for the representation of
Vµ. Notice also that selecting Ki different from Fµ

i can poten-
tially improve numerical accuracy (see, e.g., Hawkins, Pakniyat,
Theodorou, & Tsiotras, 2021) and, hence, in the development of
numerical algorithms |

1
2D

⊤

i M i+1Di| remains significant even at
near convergence of the algorithm. In comparison, the error in
the approximation of Vµ

i+1(Xi+1) is expected to become small near
convergence and, furthermore, with a proper selection of basis for
the representation of Ṽµ (see, e.g., Remark 3.1) other errors can be
suppressed in such a way that third and higher order derivatives
are either zero or relatively small. Hence, the proposed Taylor
estimator outperforms the EM estimator in both its bias and in
its variance by Proposition 3.4. In particular, if we use a value
function approximation representation that is always guaranteed
to be quadratic, we have the following result.

Remark 3.1. If the value function approximation Ṽµ

i+1 is
quadratic, then δh.o.t.i+1 ≡ 0.

This is a consequence of the fact that if Ṽµ

i+1 is quadratic then
ts second order Taylor expansion is exact.

The magnitude of the error term δ∆Ŷ
i+1 depends on the measure

we use to interpret it. For numerical applications we sample from
the measure P instead of Q, and thus EQ[δ∆Ŷ

i+1|Xi, Ki] is difficult
to interpret. We can use the following result to characterize the
value exclusively in the measure P.
5

Proposition 3.5. The bias term appearing in Theorem 3.2 is
bounded as

|EQ[δ∆Ŷ
i+1|Xi, Ki]|

≤ exp(
1
2
∥Di∥

2) EP[(δ∆Ŷ
i+1)

2
|Xi, Ki]

1/2. (27)

Proof. See Appendix D. ■

Although the error bound in Proposition 3.5 suggests that
the bias grows rapidly with ∥Di∥, when this magnitude is small
(∥Di∥ ≤ 1) the first term in the product on the right hand side of
the inequality is bounded by

√
e ≈ 1.65. This suggests that in the

selection of Ki, the magnitude of the difference Fµ

i − Ki should
ot be significantly higher than the magnitude of the diffusion
s specified by Σi. This result justifies the assumption that for
ppropriately chosen Ki, the proposed estimators have relatively

low bias and low variance. It also provides some guidance on how
to select Ki.

Furthermore, note that if Ki is selected so that the difference
µ

i − Ki is bounded, e.g., using the modification (8) to ensure
hat ∥Fµ

i − Ki∥ < C for some target drift K̂i ≈ Ki and some
possibly, large) constant C > 0, then, as discussed in Remark 2.1,
he continuous analog of the discrete-time problem will satisfy
ovikov’s condition, as required in Theorem 2.1.

. Policy improvement

In this section we discuss how we can improve the policy
ased on the value function parameters obtained from the back-
ard passes in the context of reinforcement learning. According
o the discussion in the previous section, we propose an alter-
ative Taylor-based approach to policy improvement as follows.
e begin with a discrete approximation of the continuous-time
roblem and form the Q-value function at time i, given the value
unction Vµ

i+1, as usual,

Qi(x, u; V
µ

i+1) := Li(x, u) + E[Vµ

i+1(X
x,u
i+1)|Xi = x], (28)

where X x,u
i+1 := x + Fi(x, u) + ΣiWi, corresponds to the forward

difference step with xi = x, ui = u and normally distributed
Wi. For the optimal control problem defined by (F , L, Σ, g,N),
let V ∗, π∗ refer to the optimal value function and the optimal
policy, respectively. The Bellman equation states that the optimal
policy satisfies π∗

i (x) ∈ argminu∈U Qi(x, u; V ∗

i+1) and the optimal
value function satisfies V ∗

i (x) = minu∈U Qi(x, u; V ∗

i+1) (Sutton &
arto, 2018), so approximations of the Q-value function can be
tilized to obtain improved policies, especially when the current
pproximation of the optimal value function is nearly optimal.
Performing the same Taylor expansion as in (16), but centered

t X
x,u
i+1 := E[X x,u

i+1] = x + Fi(x, u), we arrive at the approximation
Qi ≈ Qi given by

Qi(x, u; Ṽ
µ

i+1) := Li(x, u) + Y
x,u
i+1 +

1
2
tr(M

x,u
i+1), (29)

where M
x,u
i+1 := Σ⊤

i ∂xxṼ
µ

i+1(X
x,u
i+1)Σi and Y

x,u
i+1 := Ṽµ

i+1(X
x,u
i+1).

roposition 4.1. The error when using (29) to approximate the
-value function is
µ

i (x, u; Vµ

i+1) − Q̃µ

i (x, u; Ṽµ

i+1) = E[δ
∆Ŷ x,u
i+1 ], (30)

here δ
∆Ŷ x,u
i+1 := Vµ

i+1(X
x,u
i+1) − Ṽµ

i+1(X
x,u
i+1) + δ

h.o.t. x,u
i+1 .

roof. The Taylor expansion of Ṽµ

i+1(X
x,u
i+1) centered at X

x,u
i+1 is

x,u
i+1 := Y

x,u
i+1 + (Z

x,u
i+1)

⊤Wi +
1
2W

⊤

i M
x,u
i+1Wi, so the r.h.s. of (29)

is Li(x, u) + E[̃Y x,u
i+1]. Substituting Ṽµ

i+1(X
x,u
i+1) = Ỹ x,u

i+1 + δ
h.o.t. x,u
i+1

and subtracting both sides of (29) from (28) yields the desired
result. ■
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Table 1
Expressions for the proposed noiseless and re-estimate estimators, as well as the competing Euler–
Maruyama estimators. The Euler–Maruyama Noisy estimator is an application of Euler–Maruyama to
(5), where its noiseless counterpart is a variance-reduced version of the same, proposed in Exarchos
and Theodorou (2018).
Estimator Ŷi

Taylor Lµ

i + Y i+1 + Z
⊤

i+1Di

Noiseless +
1
2 tr(M i+1(I + DiD⊤

i ))

Taylor Ṽµ

i+1(Xi+1) + Lµ

i − Z
⊤

i+1W
P
i + Z

⊤

i+1Di

Re-estimate +
1
2 tr(M i+1(I + DiD⊤

i − W P
i W

P⊤
i ))

Euler–Maru. Ṽµ

i+1(Xi+1) + Lµ

i + Z̃⊤

i+1Di

Noiseless (Exarchos & Theodorou, 2018)

Euler–Maru. Ṽµ

i+1(Xi+1) + Lµ

i − Z̃⊤

i+1W
P
i + Z̃⊤

i+1Di

Noisy
w

In practice, we seek a policy πi, improved over µi from the pre-
vious iteration, with smaller Q-value function, that is, Q̃i(x, πi(x);
Vµ

i+1) ≤ Q̃i(x, µi(x); Ṽ
µ

i+1). A potential method is to use the policy

µ∗

i (x; Ṽ
µ

i+1) := min
u∈U

Q̃i(x, u; Ṽ
µ

i+1). (31)

Similarly to the previous section, when Ṽµ

i+1 is quadratic the
Taylor expansion used in this estimator is exact. Thus, this op-
timization will yield the exact optimal control solution for an LQ
problem.

4.1. Iterative-FBSDE numerical method

The iFBSDE approach begins by approximating the distribution
of {X0

i }
N
i=0 in P0 through Monte-Carlo techniques for some initial

{K 0
i }

N
i=0. The initial target policy µ0 can be specified in a variety of

ways. One possibility is to use whatever policy was used to gener-
ate {K 0

i }
N
i=0, such that K 0

i ≡ Fµ0

i , making the first backwards pass
an on-policy pass. Another possibility is to generate µ0

i during the
backward pass as µ0

i = µ∗

i (x; Ṽ
µ0

i+1), as in (31). This is allowable
because µ0

i is not needed during the forward sampling pass and
only needed after Ṽµ0

i+1 is already estimated. The drift of the
forward pass in the subsequent iteration {K 1

i }
N
i=0 can be informed

by the latest optimizing policy µ∗

i (x; Ṽ
µ0

i+1). Alternatively, the esti-
mators and policy improvement techniques presented here can
be employed in methods such as those presented in Hawkins
et al. (2021), which allow for the broad exploration of the state
space without a prior.

5. Numerical results

In this section, we numerically evaluate and compare the pro-
posed Taylor estimators to the naïve Euler–Maruyama estimators
on three problems: two nonlinear problems of state dimension
n = 1 and n = 2, and an LQ 4-dimensional problem. The
estimators evaluated in this section are summarized in Table 1.

It is worth noting that while the first two examples do not en-
joy the guarantees for the existence of classical solutions, they are
guaranteed to possess unique viscosity solutions (Yong & Zhou,
1999, Chapter 7, Theorem 4.4) and regardless of the smoothness
of the value function, the use of smooth basis functions to pro-
duce function estimators is justified by the fact that a viscosity
solution is an upper- (respectively lower-) envelope to a smooth
sub- (respectively super-) solution (see, e.g., Fleming & Vermes,
1989 or Yong & Zhou, 1999, p. 197–8).

We assume for each example that Ki is selected such that
the difference Fµ

i − Ki is bounded by some constant using a
construction similar to (8) in Remark 2.1, thus ensuring that
 e

6

the continuous analogs of the examples will satisfy Novikov’s
condition. Furthermore, for the examples with quadratic cost, we
tacitly assume that they are, in fact, only locally quadratic, grow-
ing linearly once ∥x∥ surpasses some (large) constant. This will
ensure that in the corresponding continuous SDE formulation the
dynamics and cost functions are uniformly Lipschitz, as required
by Theorem 2.1.

5.1. Nonlinear 1D example

Consider the scalar optimal control problem with the dynam-
ics and cost

dXs =
(
0.1(Xs − 3)2 + 0.2us

)
ds + 0.8 dWs, x0 = 7,

Jt (u[t,T ]) = E
[∫ T

t

(
12 |Xs − 6| + 0.4 u2

s

)
ds + 25 X2

T

]
,

over a time interval of length T = 10, with N = 200 timesteps.
We compute a ground-truth optimal value function V ∗

i and the
optimal policy π∗ by directly evaluating the optimal Bellman
equation using a finely-gridded state and control space. The val-
ues for E[V ∗

i+1(X
x,u
i+1)|Xi = x, ui = u] are computed by interpolating

a convolution which evaluates the expectation over Wi, namely,
V ∗smooth
i+1 (x) =

∑
j p(wj; Σ)V ∗

i+1(x + wj), where p(wj; Σ) is the
probability density of ΣWi at wj. The optimal value function is
visualized in Fig. 1 (the yellow surface), along with two forward–
backward trajectory distributions {(Xi, Yi)} considered for evalu-
ation: (a) the optimal K optimal

i = Fπ∗

i (the cyan trajectories), and
(b) the suboptimal K subopt

i = −0.2Xi (the orange trajectories). We
ran a series of simulations to investigate how each estimator
performs under different algorithmic conditions, visualized in
Fig. 2. Each trial has one forward pass and a single backward
pass, corresponding to each estimator. For the purposes of fair
comparison we choose the target policy to be the ground-truth
optimal policy µ = π∗, but the next step value function Ṽµ

i+1 is
the approximation produced by that estimator for the previous
step in the backward pass. Chebyshev polynomials are used to
locally approximate the optimal value function. For evaluation we
use the relative absolute error (RAE) metric (Witten, Frank, & Hall,
2011, Chapter 5)∑

x∈Ci
|̃Vi(x) − V ∗

i (x)|∑
x∈Ci

|
∑

y∈Ci
1

|Ci|
V ∗

i (y) − V ∗

i (x)|
, (32)

here Ci := {xi − 3σi, . . . , xi + 3σi} and xi, σi are the mean and
standard deviation6 of Xi. For each element in Fig. 2 we average

6 A small positive constant is used instead if the standard deviation is
xcessively small.
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Fig. 2. Heatmaps of experiments comparing the proposed estimators (Noiseless/Re-estimate) against naïve estimators (EM Noiseless/EM Noisy), with varying numbers
of basis functions and numbers of trajectory samples. Each matrix element is the relative absolute error of the value function averaged over both 20 trials and N = 200
timesteps.
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the RAE approximations (32) over 20 trials and N = 200 time
steps.

The results show that in all cases the proposed Taylor-based
estimators perform as well as the Euler–Maruyama estimators
and for the vast majority perform significantly better. Although
the Taylor-based estimators generally perform equally well, there
are slight differences in how they perform under different con-
ditions. The Taylor-noiseless estimator seems to outperform the
re-estimate estimator when the number of trajectory samples is
low, and vice versa when the number is high. Recall that the
error analysis suggests that the re-estimate estimator has lower
bias but higher variance than the Taylor-noiseless estimator. The
simulated results confirm the theoretical results, that is, when the
number of trajectory samples is low, high variance makes the re-
estimate estimator perform poorly, but when there are enough
samples to overcome the variance in the estimator, the low bias
properties can result in better accuracy. In typical usage, however,
it is likely that the low variance of the Taylor-noiseless estimator
is preferable for its simplicity and lower variance.

5.2. L1 Inverted pendulum

Next, we compared the estimators on a 2-dimensional in-
verted pendulum problem with dynamics and cost given as fol-
lows

dXs =

[
X2
s

0.4X2
s + 19.62 sin(X1

s ) + 19.62u

]
ds

+

[
0.04 0
0 0.4

]
dWs, u ∈ [−1, 1],

t (u[t,T ]) = E
[∫ T

t
0.2 |us| ds + 4 (X1

T )
2
+ 2 (X2

T )
2
]
,

here x0 = [0, π]
⊤, and the discretization uses N = 64 time

steps. Note that the cost is different than most approaches to this
problem since it has an L1 penalty in terms of the control, making
the optimal policy bang–bang–bang, that is, always contained
in the discrete set π∗(x) ∈ {−1, 0, 1}. We used normalized
Chebyshev polynomials of degree 2 and lower for the linear
basis functions used in the representation of Ṽµ. The suboptimal
sampling distribution drift was K subopt

= F∗
+ [k W̃ 1, k W̃ 2

+
i i 1 i 2 i

7

k3(N − i)]⊤, where F∗

i is the problem dynamics driven by the
ptimal policy, k1, k2, k3 are constants, and W̃ 1

i , W̃ 2
i are normally

istributed random variables independent of the problem’s noise
1
i ,W 2

i . The trajectory distributions include M = 2000 trajectory
amples.
The optimal and suboptimal forward distributions are visual-

zed in Fig. 3(a). A comparison of the RAE, now computed over
2-dimensional grid of the same width, for each of the four

stimators is visualized in Fig. 3(b). The Taylor estimators again
utperform the EM estimators by at least an order of magni-
ude for most of the backward pass on the suboptimal forward
ampling condition. Although for the optimal sampling condition
he EM Noiseless estimator performs about as well as the Taylor
stimators on average, it has higher variance and is thus less
eliable. Again, between the Taylor estimators they show nearly
quivalent performance.

.3. LQ 4D problem

We also tested the proposed estimators on a linearized
ersion of the 4-dimensional finite time cart–pole problem
Tedrake, 2009) with initial condition x0 = [0, 0, π/9, 0]⊤
and σ = diag(0.01, 0.1, 0.01, 0.1). For the suboptimal sam-
pling distribution we selected a time-invariant linear closed-loop
feedback policy K subopt

i corresponding to a feedback gain matrix[
0 0 0.5 0.2

]
. The optimal policy is found through the solu-

tion of the associated Riccati equations (distributions visualized
in Fig. 4(a)). The value function model for Ṽ again used Chebyshev
functions of degree 2 and lower (15 basis functions). The RAE
metrics, now computed over a 4-dimensional grid of the same
width, (32) are visualized in Fig. 4(b).

As predicted by the error analysis, since this is an LQ problem
and the value function is in the class of quadratic functions,
the Taylor expansion-based estimators are able to produce ap-
proximations of the value function with accuracy near machine
precision for both conditions. For the suboptimal forward sam-
pling the EM estimators diverge quickly during the backward
pass. For the optimal forward sampling condition the EM esti-
mators did not perform as well compared to the value function’s
variance and their error is still several orders of magnitudes
higher than the Taylor estimators.
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Fig. 3. Comparison of accuracy of estimators on a 2-dimensional inverted
endulum problem with L1 running cost.

These results confirm that the proposed estimators are able
o achieve near perfect performance on the most common prob-
em in stochastic optimal control, namely, linear dynamics with
uadratic cost (LQ). Further, they confirm that utilizing second-
rder derivatives of the value function is crucial for accurate
irsanov-inspired off-policy estimator schemes, contrary to what
aïve application of the theory would suggest.

. Conclusion

We have demonstrated that Taylor-based estimators for nu-
erically solving Feynman–Kac FBSDEs are significantly more
ccurate than naïve Euler–Maruyama-based estimators through
oth error analysis and numerical simulation. These estimators
re derived by using higher-order Taylor expansions and follow
he spirit of the continuous-time Feynman–Kac–Girsanov formu-
ation. Both error analysis and numerical simulations confirm that
hese estimators have very high accuracy when applied to LQ
roblems. Further, in simulation, the proposed estimators are or-
ers of magnitude more accurate than the EM estimators in both
Q and nonlinear problems. This paper also proposes a method
o use the estimated value function parameters for generating an
mproved policy in reinforcement learning problems.

Moving forward, the primary challenge with Feynman–Kac
BSDE methods is how to produce robust iterative methods. Al-
hough value function approximation can be extremely accurate
8

Fig. 4. Comparison of accuracy of estimators on a 4-dimensional LQ
approximation of cart–pole balancing system.

in the proximity of the initial forward pass, even for off-policy
methods, Runge’s phenomenon begins dominating outside the
sampling distribution. As a consequence, when in some extrap-
olative region the approximation significantly underestimates the
true value function, policy improvement begins to fail and future
iterations are constructed based on divergent policies with little
room for improvement aside from starting over. To overcome
such difficulties, the proposed estimators can be integrated into
model-based policy gradient techniques. By alternating between
small batches of trajectory samples and small changes to the
policy, the trajectory distribution avoids moving significantly off-
policy into regions where the current policy and value function
estimates are invalid. Although our approach appears similar
to Heess et al. (2015), our estimators utilize dynamics models
without differentiating the drift term or the running cost, instead
leveraging only derivatives of the local value function with re-
spect to the state. Further, our estimators are more closely related
to off-policy Bellman residual updates as discussed in Sutton and



K.P. Hawkins, A. Pakniyat and P. Tsiotras Automatica 158 (2023) 111281

B
o
c

A

m
t

A

Pˆ

ˆ

˜
δ

E

a
t
V

f
t
C

I
a

4

≥

A

P
d
T
w

E

F

F

H

H

H

H

J

K

arto (2018). Unlike typical off-policy Bellman updates, however,
ur estimators are nearly free from bias because they directly
ompensate for taking a step off-policy.
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ppendix A. Proof of Theorem 3.2

roof. Using (12) and the result (19) of Lemma 3.1 we have Ŷi :=

Yi+1−∆Ŷi = Ŷi+1−∆Yi+(δ∆Ŷ
i+1−EQ[δ∆Ŷ

i+1|Xi, Ki]), and so the general
expression for the bias is EP[Yi−Ŷi|Xi, Ki] = EP[Yi+1−Ŷi+1|Xi, Ki]+

EQ[δ∆Ŷ
i+1|Xi, Ki] − EP[δ

∆Ŷ
i+1|Xi, Ki]. The variance of the estimator is

VarP [̂Yi|Xi, Ki] = VarP [̂Yi+1 −∆Yi + (δ∆Ŷ
i+1 −EQ[δ∆Ŷ

i+1|Xi, Ki])|Xi, Ki] =

VarP[δ∆Ŷ
i+1−(Yi+1− Ŷi+1)|Xi, Ki], noting that we can drop the terms

Yi and EQ[δ∆Ŷ
i+1|Xi, Ki] because they are (Xi, Ki)-measurable.

For the re-estimate estimator we have Yi+1 − Ŷ re-est
i+1 = Vµ

i+1
(Xi+1)− Ṽµ

i+1(Xi+1), and for the noiseless estimator we have Yi+1−

Y noiseless
i+1 = Vµ

i+1(Xi+1) − Ỹi+1 = Vµ

i+1(Xi+1) − (Ṽµ

i+1(Xi+1) − δh.o.t.i+1 ) =

δ∆Ŷ
i+1, due to (16). Plugging these two equalities into the general
expressions for the bias and variance yields the result. ■

Appendix B. Proof of Proposition 3.3

Proof. A separate application of Taylor’s theorem to ∂xṼ
µ

i+1(Xi+1)
can be used to show that Z̃i+1 = Z i+1+M i+1W P

i +Σ⊤

i δ̃h.o.t.
i+1 , where

δh.o.t.
i+1 is a new set of residual terms of order three and higher.
Substituting Z̃i+1 and (16)–(17) into the definition of Ŷ em-nless

i ,
we have Ŷ em-nless

i = Lµ

i + Y i+1 + Z
⊤

i+1W
P
i +

1
2 (W

P
i )

⊤M i+1W P
i +

h.o.t.
i+1 + Z

⊤

i+1Di + D⊤

i M i+1W P
i + D⊤

i Σ⊤

i δ̃h.o.t.
i+1 . If we substitute this

into EP [̂Y em-nless
i −Ŷ noiseless

i |Xi, Ki] and then substitute in (23)–(24),
we get EP[Yi − Ŷ em-nless

i |·] = EP[Yi − Ŷ re-est
i |·] +

1
2D

⊤

i M i+1Di −

P[D⊤

i Σ⊤

i δ̃h.o.t.
i+1 |·].

For the variance result, when taking the conditional vari-
nce of Ŷ em-nless

i , the terms Lµ

i , Y i+1,D⊤

i Z i+1 drop out because
hey are (Xi, Ki)-measurable, which results in VarP [̂Y em-nless

i |·] =

arP[δh.o.t.
i+1 |·] + ∥Z i+1 + M i+1Di∥

2
+ VarP[ 12 (W

P
i )

⊤M i+1W P
i |·]

+VarP[D⊤

i Σ⊤

i δ̃h.o.t.
i+1 |·]+· · · where the remainder of the terms are

covariances between the terms in Ŷ em-nless
i . Since the second two

variance terms are non-negative, we now only need to prove that
covariance terms are not significantly large and negative.

Every covariance term but one contains higher order terms
and is thus, by our assumptions, relatively small. The only covari-
ance term without higher order terms is CovP[(Z i+1+M i+1Di)⊤W P

i ,
1
2 (W

P
i )

⊤M i+1W P
i |·] = 0. This can be shown by noting that,

or any vector Z and matrix M measurable with respect to
he conditional expectation and normally distributed vector W ,
ov[Z⊤W ,W⊤MW |·] =

∑
i,j,k E[WiWjWk|·]ZkMi,j, and since, for

distinct i, j, k, E[WiWjWk|·] = E[W 2
i Wj|·] = E[W 3

i |·] = 0 by
the properties of normal vectors, then E[WiWjWk|·] = 0 for all
i, j, k. ■

Appendix C. Proof of Proposition 3.4

Proof. The assumptions of the proposition imply that there

exists a constant 0 ≤ α ≪ 1/7 such that each of the follow-

9

ing terms (conditioned on (Xi, Ki)) |EQ[Vµ

i+1(Xi+1) − Ṽµ

i+1(Xi+1)|·]|,
|EQ[δh.o.t.i+1 |·]|, |EP[δ

h.o.t.
i+1 |·]|, |EP[D⊤

i Σ⊤

i δ̃h.o.t.
i+1 |·]| ≤ α|

1
2D

⊤

i M i+1Di|.
n light of these assumptions, the triangle inequality immedi-
tely yields that |EP[Yi − Ŷ re-est

i |·]| ≤ 3α|
1
2D

⊤

i M i+1Di|. A sec-
ond application yields |EP[Yi − Ŷ re-est

i |·] − EP[D⊤

i Σ⊤

i δ̃h.o.t.
i+1 |·]| ≤

α|
1
2D

⊤

i M i+1Di|. Applying the reverse triangle inequality gives
the result |EP[Yi − Ŷ em-nless

i |·]| = |
1
2D

⊤

i M i+1Di + EP[Yi − Ŷ re-est
i |·]

− EP[D⊤

i Σ⊤

i δ̃h.o.t.
i+1 |·]| ≥ ∥

1
2D

⊤

i M i+1Di| − |EP[Yi − Ŷ re-est
i |·] −

EP[D⊤

i Σ⊤

i δ̃h.o.t.
i+1 |·]∥ ≥ (1−4α)| 12D

⊤

i M i+1Di| ≥ (1−4α)| 12D
⊤

i M i+1Di|

|EP[Yi − Ŷ re-est
i |·]. ■

ppendix D. Proof of Proposition 3.5

roof. As a result of the change of measure defined in the
iscrete-time Girsanov theorem (Di Masi & Runggaldier, 1982,
heorem 1), we have EQ[δ∆Ŷ

i+1|Xi, Ki] = EP[ϕ(Di,W P
i )δ

∆Ŷ
i+1|Xi, Ki],

here ϕ(d, w) := exp(− 1
2∥d∥

2
+ d⊤w). By the Cauchy–Schwarz

inequality, we have that |EQ[δ∆Ŷ
i+1|Xi, Ki]| ≤ EP[ϕ(Di,W P

i )
2
|Xi, Ki]

1/2

EP[(δ∆Ŷ
i+1)

2
|Xi, Ki]

1/2. Using properties of log-normal distributions
(Crow & Shimizu, 1987) we have EP[ϕ(Di,W P

i )
2
|Xi, Ki] = EP

[exp(∥Di∥
2)|Xi, Ki] = exp(∥Di∥

2), which, upon substitution, yields
the desired result. ■
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