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a b s t r a c t

A novel framework is presented that combines Mean Field Game (MFG) theory and Hybrid Optimal
Control (HOC) theory to obtain a unique ε-Nash equilibrium for a non-cooperative game with switching
and stopping times. We consider the case where there exists one major agent with a significant
influence on the system together with a large number of minor agents constituting two subpopulations,
each agent with individually asymptotically negligible effect on the whole system. Each agent has
stochastic linear dynamics with quadratic costs, and the agents are coupled in their dynamics and
costs by the average state of minor agents (i.e. the empirical mean field). It is shown that for a class
of Hybrid LQG MFGs, the optimal switching and stopping times are state-invariant and only depend
on the dynamical parameters of each agent. Accordingly, a hybrid systems formulation of the game is
presented via the indexing by discrete events: (i) the switching of the major agent between alternative
dynamics or (ii) the termination of the agents’ trajectories in one or both of the subpopulations of
minor agents. Optimal switchings and stopping time strategies together with best response control
actions for, respectively, the major agent and all minor agents are established with respect to their
individual cost criteria by an application of Hybrid LQG MFG theory.

© 2022 Elsevier Ltd. All rights reserved.
1. Introduction

Mean Field Game (MFG) theory studies the existence of ap-
roximate Nash equilibria and the corresponding individual
trategies for stochastic dynamical systems in games involving
large number of agents. Basically, the theory exploits the rela-

ionship between the large finite and the corresponding infinite
imit population problems. The equilibria are termed ε-Nash
quilibria and are generated by the local, limited information
ontrol actions of each agent in the population. The control
ctions constitute the best response of each agent with respect to
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the behaviour of the mass of agents. Moreover, the approximation
error, induced by using the MFG solution, converges to zero as the
population size tends to infinity.

The analysis of this set of problems originated in Huang,
Caines, and Malhamé (2003, 2007) and Huang, Malhamé, and
Caines (2006), and independently in Lasry and Lions (2006a,
2006b, 2007). Many extensions and generalizations of MFGs
exist, principally the probabilistic formulation (Carmona & De-
larue, 2018), the master equation approach (Cardaliaguet, De-
larue, Lasry, & Lions, 2019) and mean field type control
theory (Bensoussan, Frehse, & Yam, 2013). In Huang (2010) and
Nguyen and Huang (2012) the authors analyse and solve the
completely observed (CO) linear quadratic Gaussian (LQG) sys-
tems case where there is a major agent (i.e. non-asymptotically
vanishing as the population size goes to infinity) together with
a population of minor agents (i.e. individually asymptotically
negligible). The existence of closed-loop ε-Nash equilibria is es-
tablished together with the individual agents’ control laws that
yield the equilibria (Nguyen & Huang, 2012). A convex analysis
method is utilized in Firoozi, Jaimungal, and Caines (2020) to
retrieve the solutions of Huang (2010), where no assumption
is imposed on the evolution of the mean field a priori. The
CO MM nonlinear (NL) MFG problem is treated in Nourian and
Caines (2013). This framework is further extended in Caines and
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izilkale (2017), Firoozi (2019), Firoozi and Caines (2017, 2019,
021) and Şen and Caines (2016) for partially observed MFG
heory for nonlinear and linear quadratic systems. Using the
robabilistic approach to MFGs, Carmona and Wang (2017) and
armona and Zhu (2016) establish the existence of open-loop and
losed-loop ε-Nash equilibria for a general MM MFG and provide
xplicit solutions for an LQG case. The works (Cardaliaguet, Cirant,
Porretta, 2018; Lasry & Lions, 2018) characterize the Nash

quilibrium for a general MFG system with one major agent
nd an infinite number of minor agents via the MFG Master
quations. It is to be noted that for the LQG case it has been, re-
pectively, demonstrated in Firoozi (2020) and Huang (2020) that
he (Markovian) closed-loop solutions to LQG MM MFGs obtained
hrough the master equation and the probabilistic approaches
re identical to the original LQG MM MFG solutions of Huang
2010). (Another line of research characterizes a Stackelberg
quilibrium between the major agent and the minor agents, see
.g. Bensoussan, Chau, Lai, and Yam (2017) and Moon and Başar
2018).)

MFGs have found numerous applications in particular in math-
matical finance and economics for characterizing equilibrium
rice and market equilibria (see Casgrain and Jaimungal (2020),
iroozi and Caines (2017), Gomes, Lafleche, and Nurbekyan (2016)
hrivats, Firoozi, and Jaimungal (2022a, 2022b) and Carmona
2020) and the references therein) – to name a few.

In several situations in stochastic dynamic games, such as in
inancial markets (Firoozi, Pakniyat, & Caines, 2017), agents wish
o find the best time at which to enter or exit a given strategy. In
rder to determine the optimal stopping time strategies together
ith best response policies for the agents one is required to

nvoke the necessary optimality conditions of stochastic hybrid
ptimal control theory (Aghayeva & Abushov, 2011; Bensoussan
Menaldi, 2000; Pakniyat & Caines, 2016, 2017a). These optimal-

ty conditions are an extension of deterministic hybrid optimal
ontrol theory (Bensoussan & Menaldi, 1997; Garavello & Piccoli,
005; Pakniyat & Caines, 2017c, 2021; Shaikh & Caines, 2007;
ussmann, 1999; Taringoo & Caines, 2013) for systems interact-
ng with stochastic diffusions. In Pakniyat and Caines (2016), in
articular, the Stochastic Hybrid Minimum Principle (SHMP) is
stablished for a general class of stochastic hybrid systems with
oth autonomous and controlled switchings and jumps possibly
ccompanied by dimension changes. Given the computational
ifficulty in solving general nonlinear forward–backward stochas-
ic differential equations (FB-SDE) and the associated boundary
onditions via the SHMP, a class of linear quadratic Gaussian
LQG) HOC problems is presented in Pakniyat and Caines (2017a)
or which the corresponding Riccati equations are independent of
he realizations of the stochastic diffusion terms.

The first combination of Mean Field Game (MFG) theory and
ybrid Optimal Control (HOC) theory appeared in the predeces-
or to the current paper, Firoozi et al. (2017); in that analysis
non-cooperative game formulation of electronic markets was
resented, where high frequency traders (HFTs) may leave the
arket before a given final time. The best stopping time policies

or the traders are further shown to yield a closed-loop ε-Nash
quilibrium for the market. The advances in this paper beyond
he contributions in Firoozi et al. (2017) are as follows:

• The system considered is a general time-varying LQG mean
field game system with switching and stopping time strate-
gies. As such, the time derivative of the switching cost
weight matrix appears in the switching (stopping) Eq. (11)
(Eq. (15)).

• Both sufficient and necessary optimality conditions for a
switching (stopping) to take place are provided in Theo-

rem 1 and Corollary 2.

2

• The proofs of Theorem 1, Corollary 2, and Theorem 3 (ε-
Nash property) are presented.

• A numerical methodology is developed for solving the set of
hybrid MFG equations in Section 4.5 and is implemented for
an example in Section 5.

• The major agent is provided with the option to switch to
different dynamics which leads to more complex automata.
More specifically, the system has 4 discrete states with an
associated increase in the number of potential realizations
compared to the case study in Firoozi et al. (2017) where
there exist 3 discrete states.

We observe that for general Hybrid LQG problems (including
LQG stopping systems as the special case with switching to
zero dynamics), the optimal switching (and stopping) times are
filtration-adapted random variables and, hence, optimal inputs
are not necessarily representable in a Riccati format. For such
problems, nonlinear versions of hybrid mean field games may be
formulated and solved, which is beyond the scope of the current
paper and is the subject of future work. However, as discussed
in Theorem 1 (and Corollary 2), for certain classes of hybrid (and
stopping) LQG systems, the optimality conditions of the SHMP
yield state-invariant representations of the optimal switching
(and stopping) times, which can be identified deterministically
based upon the dynamical parameters of each agent. Hence, in
the limiting MFG formulation of the problem all minor agents
within the same subpopulation stop at the same time yielding
a deterministic representation of the mean field. Subsequently, a
hybrid formulation of the game is developed for which switching
events correspond to (i) the switching of the major agent or
(ii) the cessation of one or both subpopulations of minor agents.
Hence, by developing and then utilizing a hybrid LQG MFG theory,
optimal switching and stopping time strategies for, respectively,
the major agent and all minor agents, together with their best
response control actions which yield a unique ε-Nash equilibrium
are established.

A recent work (Bouveret, Dumitrescu, & Tankov, 2020) studies
the stopping of agents in the infinite-population MFG systems,
where a relaxed solution approach is followed by looking for the
occupation measure of agents instead of their stopping time. Kor-
donis and Papavassilopoulos (2015) study MFG systems where at
each time instant a random number of agents enter and remain
in the system for a specific time duration. The random entrance
is described by a Markov chain and the problem is formulated as
an LQG optimal control problem for Markov jump linear systems.

We note that the following terms are used interchangeably
throughout the paper: optimal and best response in the infinite-
population case, quit and stop, control action and control input.

The paper organization is as follows: Section 2 introduces
single-agent hybrid LQG systems with state-invariant switching
and stopping strategies. Subsequently, Section 3 presents the
class of hybrid LQG MFG problems under study. More specif-
ically, this section is devoted to the two types of transitions
that exist between the dynamics at the individual level, i.e. at a
transition event the major agent switches dynamics (from one
of the realizations of Eq. (22) to the other) or a minor agent
stops (switches from dynamics (26) to zero dynamics). Section 4
presents hybrid-MFG approach, where, at each discrete state, the
major agent’s state is extended by the corresponding mean field,
and a generic minor agent’s state is extended by the correspond-
ing major agent’s state and the mean field. At the mean field game
level the dynamics governing the extended states are undergoing
changes, in which case, the associated dynamics are presented
in Sections 4.2.1 and 4.3.1, the corresponding transitions in Sec-
tion 4.2.2 and Appendix B, and the best-response solutions in

Sections 4.2.3 and 4.3.2, respectively, for the major agent and a
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eneric minor agent. Subsequently, the hybrid-MFG consistency
quation and ε-Nash property are presented in Section 4.4. Next,
ection 5 depicts simulation results. Finally, Section 6 presents
oncluding remarks and future directions.

. State-invariant optimal switching and stopping strategies
or single-agent hybrid LQG systems

In this section single-agent hybrid LQG systems are presented.
hen, a set of sufficient conditions (stemming from Pakniyat &
aines, 2017a) are derived under which the optimal switching
nd stopping times for such systems are state-invariant. The
esults are subsequently used in the formulation of a class of
ybrid LQG MFGs in the rest of the paper.
Let

(
Ω, F , {Ft}t∈[0,T ], P

)
be a probability space such that F0

ontains the P-null sets, FT = F for a fixed final time T < ∞,
nd let Ft be the natural filtration associated with the sigma-
lgebra generated by a Wiener process up to time t .
The (hybrid) state of a stochastic hybrid system is denoted by

= (Q , x) where Q ∈ Q denotes the discrete state (component)
aking values from Q with finite cardinality, and x ∈ RnQ denotes
the continuous component of the hybrid state (shortly referred
to as the continuous state). We introduce the counting index
j ∈ Z≥0 that indicates the number of switchings incurred within
the interval [t0, t). Conversely, denoting by tj the jth switching
instant, the expression t ∈

[
tj, tj+1

)
indicates that the value of

Q has changed (switched) j times by time t . In this paper, all
changes in the value of Q are controlled switchings, i.e. every
switching is a direct consequence of a control action.

A hybrid input process is a pair (SL, u(·)) =: IL ≡ I [0,T ]

L defined
on [0, T ], T < ∞, where SL =

(
(t0,Q0) , (t1,Q1) , . . ., (tL,QL)

)
,

L < ∞, is a finite hybrid sequence of switching events consisting
of a strictly increasing sequence of Ft-adapted times tj, and
(·) := {uQ0 (·), uQ1 (·), . . . , uQL (·)} is an Ft-adapted continuous

input process, where for every t ∈ [tj, tj+1], j ∈ {0, 1, . . . , L}
(equivalently denoted by 0 ≤ j ≤ L or j = 0, 1, . . . , L), the
continuous input uQj (t) is an Ft-adapted, R

mQj valued, random
variable.

The dynamics of the continuous state process are governed by
linear Itô differential equations of the form

dxQj (t) =
(
AQj (t) xQj (t) + BQj (t) uQj (t)

)
dt

+DQj (t) dw(t), t ∈
[
tj, tj+1

)
, (1)

where Qj ∈ Q, xQj (t) ∈ RnQj , uQj (t) ∈ RmQj , w(t) ∈ R, AQj (t) ∈

RnQj×nQj , BQj (t) ∈ RnQj×mQj , DQj (t) ∈ RnQj , 0 ≤ j ≤ L, t0 := 0,
tL+1 := T . Upon switching at a switching time tj, the continuous
component of the state is reinitialized according to a jump map
provided as

xQj
(
tj
)

= Ψσjx
Qj−1

(
tj−

)
≡ ΨσQj−1,Qj

xQj−1
(
tj−

)
. (2)

It is further assumed that

DQj (tj) = ΨσQj−1Qj
DQj−1 (tj), (3)

for all 1 ≤ j ≤ L, which implies equivalent diffusion fields before
and after switching events.

Given an initial condition
(
Q (0), xQ0 (0)

)
=

(
Q0, x

Q0
0

)
, the cost

associated with the hybrid input IL over the time horizon [0, T ] is
considered to be of the form

J
(
t0,

(
Q0, x

Q0
0

)
, IL

)
=

1
2
E
[
∥xQL (T )∥2

P̄QL (T )

+

L∑
∥xQj−1 (tj−)∥2

Cσj (tj)

j=1

3

+

L∑
i=0

∫ ti+1

ti

(xQi (t)
2
PQi (t) +

uQi (t)
2
RQi (t)

)
dt

]
, (4)

where 0 ≤
[
P̄QL (t)

]T
= P̄QL (t) ∈ RnQL×nQL , 0 ≤

[
Cσj (t)

]T
=

Cσj (t) ∈ RnQj−1×nQj−1 , 0 ≤
[
PQi (t)

]T
= PQi (t) ∈ RnQi×nQi ,

0 <
[
RQi (t)

]T
= RQi (t) ∈ RmQi×mQi . The associated stochastic

hybrid optimal control problem is to find infIL J
(
t0, (Q0, x

Q0
0 ), IL

)
.

Theorem 1 (Sufficient Conditions for Ft-invariance of Optimal So-
lutions of the Hybrid LQG Problem). For the system governed by
(1)–(4), assume that a family of matrices

{
ΠQj (t) ; j = 0, 1, . . . , L

}
exists satisfying the following family of Riccati equations (for simplic-
ity of notation, the explicit time dependence (t) is dropped whenever
it is clear from the context)

Π̇Qj = ΠQjBQj
[
RQj

]−1 [
BQj

]T
ΠQj − ΠQjAQj

−[AQj ]
TΠQj − PQj , (5)

subject to the terminal and boundary conditions

ΠQL (T ) = P̄QL , (6)

ΠQj−1
(
tj
)

= Ψ T
σj
ΠQj

(
tj
)
Ψσj + Cσj (tj), (7)

and for every j = L, L − 1, . . . , 1, there exist tj ∈
[
0, tj+1

)
satisfying the following algebraic matrix relations (equality, strict
positive definiteness, and strict negative definiteness):

H∆
σj

(s) = 0, s = tj, (8)

H∆
σj

(s) > 0, s > tj, (9)

H∆
σj

(s) < 0, s < tj, (10)

where the time order of the strict matrix inequalities corresponds to
the strict decrease in the value function, and

H∆
σj

(s) := Ψ T
σj
ΠQj (s)

[
BQj [RQj ]

−1
[BQj ]

T

−ΨσjB
Qj−1 [RQj−1 ]

−1
[BQj−1 ]

TΨ T
σj

]
ΠQj (s)Ψσj

+Ψ T
σj
ΠQj (s)

[
ΨσjA

Qj−1 − AQjΨσj − ΨσjB
Qj−1

[RQj−1 ]
−1

[BQj−1 ]
TCσj

]
+

[
[AQj−1 ]

TΨσj − Ψ T
σj
[AQj ]

T

−CσjB
Qj−1 [RQj−1 ]

−1
[BQj−1 ]

TΨ T
σj

]
ΠQj (s)Ψσj

+PQj−1 − CσjB
Qj−1 [RQj−1 ]

−1
[BQj−1 ]

TCσj + CσjA
Qj−1

+[AQj−1 ]
TCσj − Ψ T

σj
PQjΨσj −

∂Cσj (t)

∂t

⏐⏐⏐⏐
t=s

. (11)

Then the switching times are Ft-independent (almost surely de-
terministic) and are independent of the initial conditions, and the
associated optimal control actions are determined as

uQj,◦ (t, x) = −
[
RQj (t)

]−1 [
BQj (t)

]T
ΠQj (t) xQj,◦ (t) . □ (12)

Proof. See Appendix A.

An important consequence of Theorem 1 is that it yields as a
corollary the crucial existence condition for the optimal stopping
times used in Theorem 3.

Consider a system governed by

dx(t) = A t x t + B t u t dt + D t dw(t), (13)
( ( ) ( ) ( ) ( )) ( )



D. Firoozi, A. Pakniyat and P.E. Caines Automatica 141 (2022) 110244

w
d
(

J

t
t

s
f
o

q
Q
o
s
t

here t ∈
[
0, tωs

)
, and tωs is an Ft-adapted stopping time, to be

etermined together with a continuous input in order to infimize
minimize) the cost

(u) =
1
2
E
[
∥x(tωs )∥

2
C(tωs ) +

∫ tωs

0

(
∥x(t)∥2

P(t) + ∥u(t)∥2
R(t)

)
dt

]
, (14)

Define

H∆ (s) := P (s) − C (s) B (s) R−1 (s) BT (s) C (s)

+C (s) A (s) + AT (s) C (s) −
∂C(t)
∂t

⏐⏐⏐⏐
t=s

. (15)

Corollary 2 (Stopping Policies for LQG Systems). Consider the (de-
terministic) algebraic matrix expression (15). If there exists a finite
time ts ∈ [0, ∞) for which

H∆ (s) = 0, s = ts, (16)

H∆ (s) > 0, s > ts, (17)

H∆ (s) < 0, s < ts, (18)

then tωs = ts for almost all ω ∈ Ω , that is to say, the optimal stop-
ping time for the system (13) with the cost (14) is Ft-independent,
state-invariant, and takes the value ts almost surely, and the optimal
input is determined by

u (t, x) = −R−1 (t) BT (t) Π (t) x (t) , (19)

where Π (t) is the solution to

Π̇ = ΠBR−1BTΠ − ΠA − ATΠ − P, (20)

subject to the terminal (stopping) condition

Π (ts) = C (ts) . □ (21)

Proof. The proof is immediate since it expresses the conditions
of Theorem 1 for the special case of Ψσ = 0.

3. Major–minor hybrid LQG mean field games

3.1. Problem description

We consider the case where there exists one major agent and
N minor agents interacting with each other through the mean
field coupling in their dynamics over the time interval [0, T ].
Two types of minor agents are considered: type A a with the
population of Na and type A b with the population of Nb, such
that Na + Nb = N .

The dynamics of the major agent and a generic minor agent
are described by the linear time evolution of their states and a
quadratic performance function. However, the two populations
of minor agents have different linear dynamics and quadratic
performance objectives. We study the case where the major agent
A0 is permitted to switch from one set of dynamics to another at
time t0s if optimal, while a generic minor agent Ai, 1 ≤ i ≤ N , is
permitted to stop at an optimal time t is. With abuse of notation,
the superscript k in A k

0 , k = 1, 2, denotes that the major agent’s
operation mode governed by the dynamics (22) and the cost func-
tional (24), and in A k

i , 1 ≤ i ≤ N, k ≜ a, b, denotes that minor
agent Ai, 1 ≤ i ≤ N , is of type k, k ≜ a, b, governed by (26)–(27).
As discussed in Section 3.2, the optimal switching or stopping
time policy for each agent is trajectory and state independent,
and depends only on its dynamical parameters (i.e. the agent’s
type). Since the dynamical parameters for all minor agents in
their respective types are the same, it follows that the stopping
times are the same for all agents of each subpopulation. The dis-
tinct nature of the switching (stopping) events, together with the

continuous evolution of the state processes between switchings,

4

Fig. 1. Hybrid Automata Diagram with a single major player and two pop-
ulations of minor players with switching and stopping times. Transitions
accompanied by dimension changes are identified with double-line arrows.

result in the stochastic hybrid form of the problem analysed in
this paper. Moreover, the fact that the minor agents are modelled
as members of large populations gives rise to our use of the LQG
MFG framework. The system has several distinct combinatoric
alternatives; this is because there are various distinct sequences
wherein one subpopulation of minor agents or another drops
out first, or the major agent switches to one particular discrete
state before or after a minor agent stopping event. It is to be
emphasized that the discrete state sequence that actually occurs
for any given system depends upon the solution of the complete
(initial to terminal) hybrid MFG equations for the system, and in
particular is not prescribed. We note that a key condition which
yields the collective switching of the entire subpopulations is
given by (3) (see Section 2) and while this is reasonable in a class
of LQG problems, the corresponding condition is most unlikely to
hold in a nonlinear framework.

3.2. Discrete state association

In order to present the dynamics of the system in the stochas-
tic hybrid systems framework of Pakniyat and Caines (2016,
2017a), the discrete states qk

0•
are assigned (see Fig. 1) where

k ≜ a, b refers to the mode in the dynamics of the major agent
and • represents the active subpopulations of minor agents. For
instance, the discrete state q1

0ab
indicates that the major agent is

subject to its first dynamics and both subpopulations A a and A b

are present, and the discrete state q2
0a

indicates that the major
agent is subject to its second dynamics, subpopulation A a is
present and subpopulation A b has already quit the system. Fur-
thermore, in order to refer to the temporal mode of the system,
the multivalued discrete states Qj, 0 ≤ j ≤ 3, are introduced
(see Fig. 1), which correspond to the evolution of the system
within the intervals [tj, tj+1), where t0 = 0 is the initial time,
t1, t2, t3 correspond to the times of the events of stopping of a
subpopulation or switching of the major agent, in the order of
occurrence, and t4 = T is the terminal time. This corresponds
o the scenario in which all the possible discrete changes in
he system occur before the terminal time, i.e. Q3 = q2

0
. Other

cenarios where the discrete state at terminal time is different
rom the case considered here are possible with minor variations
ver the results presented in this paper.
Now, we describe the evolution of the system over the se-

uence of generic discrete states Qj, 0 ≤ j ≤ 3. The discrete state
0, as indicated in Fig. 1, associates with the system evolution
ver the interval [0, t1) in the system’s initial setting where both
ubpopulations of minor agents are interacting together and with
he major agent which is subject to its first dynamics A 1.
0
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The multivalued discrete state Q1 corresponds to the evolution
of the system over [t1, t2) with one change relative to the initial
setting; this consists of three possible situations: (i) the major
agent subject to its second dynamics A 2

0 is interacting with both
subpopulations A a, A b present in the system; this corresponds to
the centre node inside Q1 in Fig. 1 and is denoted by Q1 = q2

0ab
,

ii) the major agent subject to its first dynamics A 1
0 is interacting

with the subpopulation A a while the subpopulation A b has quit
the system; this corresponds to the top node inside Q1 in Fig. 1
and is denoted by Q1 = q1

0a
, and (iii) the major agent subject to

its first dynamics A 1
0 is interacting with A b while A a has quit,

corresponding to the bottom node inside Q1 in Fig. 1, denoted by
Q1 = q1

0b
.

The multivalued discrete state Q2 represents the evolution of
the system over [t2, t3) with two changes relative to the initial
setting for which three situations can be considered: (I) the major
agent subject to its second dynamics A 2

0 is interacting with the
subpopulation A a, and the subpopulation A b has already quit,
which corresponds to the top node inside Q2 in Fig. 1 denoted
as Q2 = q2

0a
, (II) the major agent subject to its second dy-

namics A 2
0 is interacting with A b, and the subpopulation A a

has already quit, which corresponds to the bottom node inside
Q2 in Fig. 1 denoted by Q2 = q2

0b
, (III) the major agent is

subject to its first dynamics A 1
0 and both subpopulations A a,

A b have already quit, which corresponds to the centre node
inside Q2 in Fig. 1, denoted by Q2 = q1

0
.

The discrete state Q3 corresponds to the evolution of the
major agent subject to its second dynamics A 2

0 over [t3, T ] which
corresponds to Q3 = q2

0
.

In this work it is assumed that each of the time periods [tj, tj+1)
associated with the multivalued discrete state Qj, 0 ≤ j ≤ 3, is
non-empty, i.e. tj < tj+1. This assumption is tenable since it will
be shown that for the class of hybrid LQG systems in this paper,
the switching times t1, t2, t3 can be deterministically evaluated
as they depend only on the system parameters.

Remark 1. It would be possible to extend the formulation to
include a larger number of subpopulations greater than two.
However, this results in a larger number of discrete states and
associated realizations for the system. Therefore the correspond-
ing automata becomes more complex and the computational load
increases. The problem may become intractable if the number of
subpopulations becomes large.

3.3. Dynamics and costs: Finite population

3.3.1. Major agent
Let the evolution of the major agent A k

0 , k = 1, 2, be ex-
pressed as

dx0 = Ak
0x0dt + Bk

0u0dt + F k
0x

(Nt )dt + Dk
0dw0, (22)

where x0 ∈ Rn is the state, u0 ∈ Rm is the control input, and
w0 ∈ Rr is a standard Wiener process. The matrices Ak

0, B
k
0, F

k
0 ,

and Dk
0, k = 1, 2, are of appropriate dimension.

From (22), the major agent is coupled with the minor agents
by the average term x(Nt ) =

1
Nt

∑Nt
i=1 xi. Note that in (22), Nt may

take the following values.

Nt =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Na + Nb for Q0 = q1

0ab
,Q1 = q2

0ab

Na for Q1 = q1
0a

,Q2 = q2
0a

Nb for Q1 = q1
0b

,Q2 = q2
0b

0 for Q = q1 ,Q = q2 ,

(23)
2
0

3
0

5

where x(Nt ) := 0 for Nt = 0. The major agent A k
0 , k = 1, 2, aims

to minimize the following cost functional

JN,k
0 (u0, u−0) =

1
2E

[
∥x0(T )∥2

P̄k0∫ T

0
(∥x0 − Φ(x(Nt ))∥2

Pk0
+ ∥u0∥

2
Rk0
)dt

]
, (24)

(x(Nt )) := Hk
0x

(Nt ), (25)

ith the weight matrices of appropriate dimension.

ssumption 1. (i) (Pk
0 )

⊺
= Pk

0 , (Rk
0)

⊺
= Rk

0, (P̄k
0 )

⊺
= P̄k

0 , (ii)
he matrices Ak

0, B
k
0, F

k
0 , P

k
0 , H

k
0 and Rk

0 are bounded, (iii) Rk
0 is a

continuous function of time t , 0 ≤ t ≤ T , and (iv) every column
Dk
0(:, j), j = 1, . . . , r , of Dk

0 is such that
∫ T
0 ∥Dk

0(:, j)∥
2 < ∞.

Assumption 2 (Convexity). Rk
0 > 0, P̄k

0 ≥ 0, and Pk
0 ≥ 0.

We note once again that the superscript k in A k
0 denotes that

the major agent is acting with respect to the dynamics and the
cost functional k.

3.3.2. Generic A k-type minor agent
The dynamics for a minor agent A k

i , k ≜ a, b, is given by

dxi = Akxidt + Bkuidt + Gkx0dt + Fkx(Nt )dt + Dkdwi, (26)

where xi ∈ Rn is the state of agent A k
i , ui ∈ Rm is the control

input, wi ∈ Rr is a standard Wiener process, and Ak, Bk, Gk, Fk, Dk
are constant matrices of appropriate dimension. Note that Nt in
(26) again takes values as in (23) over the horizon [0, T ]. The cost
for a type A k minor agent is given by

JN,k
i (ui, u−i) =

1
2E

[
∥xi(t is) − Ψk(x

(N
tis
)
)∥2

P̄k

+

∫ t is

0
(∥xi − Ψk(x(Nt ), x0)∥2

Pk + ∥ui∥
2
Rk )dt

]
, (27)

k(x(Nt ), x0) := Hk
1x0(t) + Hk

2x
(Nt ), (28)

where the weight matrices have appropriate dimensions, and
t is ∈ [0, T ] is the stopping time of agent i freely decided by this
agent in order to minimize its individual cost. Particularly, t is is
not directly restricted to be the same over the entire population.
However, whenever the parameters of the associated extended
dynamics (presented in Section 4.3) satisfy the requirements of
Corollary 2, then the optimal stopping times t is = tks for the entire
subpopulation of A k-type minor agents.

Assumption 3. (i) P⊺
k = Pk, R

⊺
k = Rk, P̄

⊺
k = P̄k, (ii) the matrices

Ak, Bk, Fk, Gk, Pk, P̄k, Hk
1 , Hk

2 and Rk are bounded, (iii) Rk is a
ontinuous function of time t , 0 ≤ t ≤ T , and (iv) every column
k(:, j), j = 1, . . . , r , of Dk is such that

∫ T
0 ∥Dk(:, j)∥2 < ∞.

ssumption 4 (Convexity). P̄k ≥ 0, Pk ≥ 0, and Rk > 0.

From (26) and (27), a generic A k-type minor agent interacts
ith the major agent’s state as well as the average state of all
xisting minor agents through its dynamics and cost functional.
We denote by w = {wi, 0 ≤ i ≤ N} the set of (N + 1)

ndependent Rr -valued standard Wiener processes on the proba-
ility space (Ω, F , P), where w is progressively measurable with
espect to the filtration Fw

= {Fw
t ⊂ F ; t ≥ 0}.

ssumption 5. The initial states {xi(0), 0 ≤ i ≤ N} de-
ined on (Ω, F , P) are identically distributed, mutually indepen-
ent and also independent of Fw

T , with Exi(0) = 0. Moreover,
upi E∥xi(0)∥2

≤ c < ∞, 0 ≤ i ≤ N < ∞, with c independent of
.



D. Firoozi, A. Pakniyat and P.E. Caines Automatica 141 (2022) 110244

A
p
t
t
i
s

We also define

Ik := {1 ≤ i ≤ N| agent i belongs to sub-population k},

where Nk := |Ik| is the number of agents in class k ≜ a, b, with
Na + Nb = N . The empirical distribution of the agents sampled
independently of the initial conditions and Wiener processes
within populations A a and A b at time t0 is denoted by πN

=

(πN
a , πN

b ), where πN
a =

Na
N and πN

b =
Nb
N .

ssumption 6. There exists π = (πa, πb) such that limN→∞πN
a.s.
= π .

In the following we introduce the admissible sets of controls
for each agent. By definition Fi,t , 1 ≤ i ≤ N , is the increasing fam-
ily of null set augmented σ -fields generated by (x0(τ ), xi(τ ); 0 ≤

τ ≤ t), and F0,t is the increasing family of null set augmented σ -
fields generated by (x0(τ ); 0 ≤ τ ≤ t). FN

t is the increasing family
of σ -fields generated by the set {xj(τ ), x0(τ ); 0 ≤ τ ≤ t, 1 ≤

j ≤ N}. The set of control actions U N,L
g consists of linear feedback

control actions adapted to {FN
t , t ∈ [0, T ]}, 1 ≤ N < ∞.

Assumption 7 (Major Agent Linear Controls). For the major agent
A0 the set of control inputs U L

0 is defined to be the collection
of linear feedback controls adapted to the filtration {F0,t , t ∈

[0, T ]}.

Assumption 8 (Minor Agent Linear Controls). For the minor agent
Ai, 1 ≤ i ≤ N , the set of control inputs U L

i is defined to be
the collection of linear feedback controls adapted to the filtration
{Fi,t , t ∈ [0, t is]}, 1 ≤ i ≤ N .

4. Hybrid mean field game approach

Following the mean field game methodology with a major
agent (Huang, 2010; Nourian & Caines, 2013), the hybrid MFG
problem is first solved in the infinite population limit where
the average term in the finite population dynamics and cost
functional of each agent is replaced by its infinite population
limit, i.e. the mean field, and the major agent and a generic minor
agent Ai only use local information (i.e. F0,t , Fi,t , respectively).
Then specializing to linear systems (see e.g. Huang (2010)), the
major agent’s state is extended with the mean field, while the
minor agent’s state is extended with the mean field and the major
agent’s state; this yields hybrid LQG optimal control problems
(see Appendix A) for each agent linked only through the mean
field and the major agent’s state. Then the main results of Huang
(2010) and Nourian and Caines (2013) are (i) the existence of
infinite population best response strategies which yield the Nash
equilibria, and (ii) the infinite population best response strategies
using local information applied to the finite population system
yield an ε-Nash equilibrium (see Theorem 3).

In this section, first, the hybrid evolution of the mean field
is derived. Then the extended hybrid optimal control problems
for the major agent and minor agents are formed and addressed
in the infinite population case. Finally, Theorem 3 is presented
which links the infinite population and finite population hybrid
LQG MFG problem solutions.

4.1. Hybrid evolution of mean field

Following the LQG MFG methodology (Huang, 2010), the mean
field is defined as the limit, when it exists, of the average of minor
agents’ states when the population size goes to infinity

x̄k(t) = lim
Nk→∞

x(Nk)(t) = lim
Nk→∞

1
N

Nk∑
xi(t),
k i=1

6

where k ≜ a, b, for the case considered in this paper. Now, the
control strategy for each minor agent is considered to have the
general linear state feedback form

ui = Lk1xi + Lk2x0 +

Nt∑
j̸=i,j=1

Lk3xj + mk, i ∈ Ik, (29)

for bounded time-varying matrices Lk1, Lk2, Lk3, and mk of appro-
riate dimension (for notation brevity here and in the rest of
he paper time arguments are dropped unless for clarity). Then
he mean field dynamics, in q.m., is obtained by substituting (29)
n the minor agents’ dynamics (26), and taking the average over
ubpopulation A k, and then its limit as Nk → ∞.
With the assignment of discrete states Qj introduced in Sec-

tion 3.2, the set of the mean field equations is given by

dx̄Qj = ĀQj x̄Qjdt + ḠQjx
Qj
0 dt + m̄Qjdt, j = 0, 1, 2, 3. (30)

For Q0 = q1
0ab

, x̄Q0 = [x̄Ta , x̄
T
b ]

T consists of the mean field x̄a of the
subpopulation A a, and the mean field x̄b of the subpopulation A b

with πQ0 = π . The matrices in (30) are then

ĀQ0 =

[
Āa

Āb

]
, ḠQ0 =

[
Ḡa

Ḡb

]
, m̄Q0 =

[
m̄a
m̄b

]
, (31)

where Āa, Āb ∈ Rn×2n, Ḡa, Ḡb ∈ Rn×n, m̄a, m̄b ∈ Rn. The above
matrices shall be determined from the consistency equations
discussed in Section 4.4.

In case (i) in Section 3.2 where Q1 = q2
0ab

, the mean field is

defined as x̄
q2
0ab = [x̄Ta , x̄

T
b ]

T , hence π
q2
0ab = π , and

Ā
q2
0ab =

[
Āa

Āb

]
, Ḡ

q2
0ab =

[
Ḡa

Ḡb

]
, m̄

q2
0ab =

[
m̄a
m̄b

]
. (32)

For case (ii) where Q1 = q1
0a
, x̄

q1
0a = x̄a, and hence π

q1
0a = 1, and

the matrices in (30) are given as

Ā
q1
0a = Āa, Ḡ

q1
0a = Ḡa, m̄

q1
0a = m̄a, (33)

where Āa ∈ Rn×n, Ḡa ∈ Rn×n, m̄a ∈ Rn.
For case (iii) where Q1 = q1

0b
, x̄

q1
0b = x̄b, and hence π

q1
0b = 1,

and the matrices in (30) are given by

Ā
q1
0b = Āb, Ḡ

q1
0b = Ḡb, m̄

q1
0b = m̄b. (34)

For case (I) in Section 3.2 where Q2 = q2
0a
, the mean field is

defined as x̄
q2
0a = x̄a, and hence π

q2
0a = 1, and the matrices in

(30) are given as

Ā
q2
0a = Āa, Ḡ

q2
0a = Ḡa, m̄

q2
0a = m̄a. (35)

For case (II) where Q2 = q2
0b
, x̄

q2
0b = x̄b, and hence π

q2
0b = 1, and

the matrices in (30) are given by

Ā
q2
0b = Āb, Ḡ

q2
0b = Ḡb, m̄

q2
0b = m̄b. (36)

For case (III) where Q2 = q1
0
, x̄

q1
0 = 0, hence π

q1
0 = 0.

Finally, for Q3 = q2
0
, x̄Q3 = 0, and as a result πQ3 = 0.

4.2. Major agent: Infinite populations

4.2.1. Hybrid dynamics and cost
The extended hybrid dynamics of the major agent in the

infinite population, i.e. the dynamics for x
ex,Qj
0 is given by

ex,Qj Qj ex,Qj Qj Qj Qj Qj Qj
dx0 = (A0 x0 + M0 + B0 u0 )dt + D0 dW0 , (37)
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≤ j ≤ 3, where the dynamical matrices are given by

A
Qj
0 =

[
A
Qj
0 πQj ⊗ F

Qj
0

ḠQj ĀQj

]
, M

Qj
0 =

[
0n×1
m̄Qj

]
, B

Qj
0 =

[
B
Qj
0

0•×•

]
,

D
Qj
0 =

[
D
Qj
0 0•×•

0•×• 0•×•

]
, W

Qj
0 =

[
w0
0•×•

]
. (38)

n (38), 0•×• denotes a zero matrix of appropriate dimension, and
⊗ denotes the Kronecker product.

The cost functional for the extended major agent’s hybrid
system is given by

J∞0 (u0) =
1
2E

[
∥xex,Q3

0 (T )∥2
P̄
Q3
0

+

3∑
j=1

∥x
ex,Qj
0 (t−j )∥2

C0,σj

+

3∑
j=0

∫ tj+1

tj

(
∥x

ex,Qj
0 (s)∥2

P
Qj
0

+ ∥u
Qj
0 (s)∥2

R
Qj
0

)
ds

]
, (39)

where t0 = 0, t4 = T . In (39), the first term denotes terminal cost
and the third term denotes running cost where the corresponding
weight matrices are defined as

P̄Q3
0 = P̄2

0 ,

P
Qj
0 = [In, −πQj ⊗ H

Qj
0 ]

TP
Qj
0 [In, −πQj ⊗ H

Qj
0 ], (40)

here In denotes the identity matrix of size n. Moreover, the
econd term in (39) denotes the switching cost corresponding to
he terminal cost of the quitting agents, for which the associated
eight matrix C0,σj shall be identified for each switching in

Section 4.2.2.
Now the dynamical and weight matrices introduced in their

general form, respectively, in (38) and (40) are specified for each
discrete state Qj, 0 ≤ j ≤ 3.

Over the interval [t0, t1), and in discrete state Q0, the dynamics
f the continuous state xex,Q0

0 = [xT0, x̄
T
a , x̄

T
b ]

T is determined by (37)
ith

Q0
0 =

⎡⎣ A1
0 π ⊗ F 1

0[
Ḡa

Ḡb

] [
Āa

Āb

] ⎤⎦ , MQ0
0 =

⎡⎣ 0n×1[
m̄a
m̄b

]⎤⎦ , WQ0
0 =

[
w0

02r×1

]
,

BQ0
0 =

[
B1
0

02n×m

]
, DQ0

0 =

[
D1
0 0n×2r

02n×r 02n×2r

]
, (41)

here π ⊗ F 1
0 = [πaF 1

0 , πbF 1
0 ], and PQ0

0 in (39) is given by
Q0
0 = [In, −πaH1

0 , −πbH1
0 ]

TP1
0 [In, −πaH1

0 , −πbH1
0 ]. (42)

We also define

P̄Q0
0 = [In, −πaH1

0 , −πbH1
0 ]

T P̄1
0 [In, −πaH1

0 , −πbH1
0 ], (43)

which will be used in Section 4.2.2 to specify the switching cost
at t1.

Over the interval [t1, t2), in case (i) where Q1 = q2
0ab

holds

over the interval [t1, t2), the dynamics of x
ex,q2

0ab

0 = [xT0, x̄
T
a , x̄

T
b ]

T is
governed by (37) with

A
q2
0ab

0 =

⎡⎣ A2
0 π ⊗ F 2

0[
Ḡa

Ḡb

] [
Āa

Āb

] ⎤⎦ , M
q2
0ab

0 =

⎡⎣ 0n×1[
m̄a
m̄b

]⎤⎦ ,

B
q2
0ab

0 =

[
B2
0

02n×m

]
, D

q2
0ab

0 =

[
D2
0 0n×2r

02n×r 02n×2r

]
, W

q2
0ab

0 =

[
w0

02r×1

]
,

(44)

and P
q2
0ab

0 in (39) and P̄
q2
0ab

0 (to be used in Section 4.2.2 for speci-
fying the switching cost at t2.) are given by
q2
0ab 2 2 T 2 2 2
P0 = [In, −πaH0 , −πbH0 ] P0 [In, −πaH0 , −πbH0 ], (45)

7

P̄
q2
0ab

0 = [In, −πaH2
0 , −πbH2

0 ]
T P̄2

0 [In, −πaH2
0 , −πbH2

0 ]. (46)

ver the interval [t1, t2), in case (ii) where Q1 = q1
0a

holds,

he dynamics and cost functional for x
ex,q1

0a

0 = [xT0, x̄
T
a ]

T are,
espectively, determined by (37) and (39) with
q1
0a

0 =

[
A1
0 F 1

0
Ḡa Āa

]
, M

q1
0a

0 =

[
0n×1
m̄a

]
, B

q1
0a

0 =

[
B1
0

0n×m

]
,

q1
0a

0 =

[
D1
0 0n×r

0n×r 0n×r

]
, W

q1
0a

0 =

[
w0
0r×1

]
, (47)

P
q1
0a

0 = [In, −H1
0 ]

TP1
0 [In, −H1

0 ], (48)

P̄
q1
0a

0 = [In, −H1
0 ]

T P̄1
0 [In, −H1

0 ]. (49)

ver the interval [t1, t2), in case (iii) where Q1 = q1
0b

holds,
ex,q1

0b = [xT0, x̄
T
b ]

T and

A
q1
0b

0 =

[
A1
0 F 1

0
Ḡb Āb

]
, M

q1
0b

0 =

[
0n×m
m̄b

]
, B

q1
0b

0 =

[
B1
0

0n×m

]
,

D
q1
0b

0 =

[
D1
0 0n×r

0n×r 0n×r

]
, W

q1
0b

0 =

[
w0
0r×1

]
, (50)

P
q1
0b

0 = [In, −H1
0 ]

TP1
0 [In, −H1

0 ], (51)

P̄
q1
0b

0 = [In, −H1
0 ]

T P̄1
0 [In, −H1

0 ]. (52)

Over the interval [t2, t3), in case (I) where Q2 = q2
0a

holds,

x
ex,q2

0a = [xT0, x̄
T
a ]

T and

A
q2
0a

0 =

[
A2
0 F 2

0
Ḡa Āa

]
, M

q2
0a

0 =

[
0n×1
m̄a

]
, B

q2
0a

0 =

[
B2
0

0n×m

]
,

D
q2
0a

0 =

[
D2
0 0n×r

0n×r 0n×r

]
, W

q2
0a

0 =

[
w0
0r×1

]
, (53)

P
q2
0a

0 = [In, −H2
0 ]

TP2
0 [In, −H2

0 ], (54)

P̄
q2
0a

0 = [In, −H2
0 ]

T P̄2
0 [In, −H2

0 ]. (55)

Over the interval [t2, t3), in case (II) where Q2 = q2
0b

holds,

x
ex,q2

0b = [xT0, x̄
T
b ]

T and

A
q2
0b

0 =

[
A2
0 F 2

0
Ḡb Āb

]
, M

q2
0b

0 =

[
0n×1
m̄b

]
, B

q2
0b

0 =

[
B2
0

0n×m

]
,

D
q2
0b

0 =

[
D2
0 0n×r

0n×r 0n×r

]
, W

q2
0b

0 =

[
w0
0r×1

]
, (56)

P
q2
0b

0 = [In, −H2
0 ]

TP2
0 [In, −H2

0 ], (57)

P̄
q2
0b

0 = [In, −H2
0 ]

T P̄2
0 [In, −H2

0 ]. (58)

Over the interval [t2, t3), in case (III) where Q2 = q1
0
holds, x

ex,q1
0 =

x0 and

A
q1
0

0 = A1
0, M

q1
0

0 = 0n×1, B
q1
0

0 = B1
0, D

q1
0

0 = D1
0,

W
q1
0

0 = w0, P
q1
0

0 = P1
0 , P̄

q1
0

0 = P̄1
0 .

Finally, over the interval [t3, T ], in discrete state Q3, xex,Q3 = x0
and

AQ3
0 = A2

0, MQ3
0 = 0n×1, BQ3

0 = B2
0, DQ3

0 = D2
0,

WQ3
0 = w0, PQ3

0 = P2
0 , P̄Q3

0 = P̄2
0 .

4.2.2. Jump transition maps and switching costs
The major agent’s switching cost associated with tj takes into
account the cost incurred when a change occurs in the system. To
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dentify it, we define the notation M
Qj
0 (l : m), 0 ≤ j ≤ 3, which is

ormed by using matrix P̄
Qj
0 wherein all the entires are made zero

xcept those associated with its lth to mth columns and rows.
ence it has the same dimension (size) as P̄

Qj
0 , i.e.

Qj
0 (l : m) =

⎡⎣
P̄
Qj
0 (:, l : m)
0 0

0 0

⎤⎦
size(P̄

Qj
0 )

}
P̄
Qj
0 (l :m, :) (59)

here P̄
Qj
0 (:, l : m) and P̄

Qj
0 (l : m, :), respectively, denote lth to mth

columns and rows of P̄
Qj
0 .

The values of the major agent’s continuous state before and
after switching at t1 satisfy the following jump map

xex,Q1
0 (t1) = Ψ0,σ1x

ex,Q0
0 (t1−). (60)

For the transition between Q0 and case (i) for Q1 where Q1 = q2
0ab

the map Ψ0,σ1 is the identity matrix, i.e.

Ψ0,σ1 = Ψ0,σq1
0ab

,q2
0ab

= I3n. (61)

This transition is not accompanied by change in the dimension of
the major agent’s extended state. Furthermore, the weight matrix
for the corresponding switching cost is

C0,σ1 = C0,σq1
0ab

,q2
0ab

= 03n×3n. (62)

For the transition between Q0 and case (ii) where Q1 = q1
0a

Ψ0,σ1 = Ψ0,σq1
0ab

,q1
0a

=

[
In 0n×n 0n×n

0n×n In 0n×n

]
, (63)

C0,σ1 = C0,σq1
0ab

,q1
0a

= M
q1
0ab

0 (2n + 1 : 3n). (64)

or the transition between Q0 and case (iii) where Q1 = q1
0b

0,σ1 = Ψ0,σq1
0ab

,q1
0b

=

[
In 0n×n 0n×n

0n×n 0n×n In

]
, (65)

0,σ1 = C0,σq1
0ab

,q1
0b

= M
q1
0ab

0 (n + 1 : 2n). (66)

he values of the major agent’s continuous state before and after
he switching at t2 satisfy the jump transition map

ex,Q2
0 (t2) = Ψ0,σ2x

ex,Q1
0 (t2−), (67)

here

0,σ2 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ψ0,σq1
0a

,q2
0a

= I2n,

Ψ0,σq1
0a

,q1
0

=
[
In 0n×n

]
,

Ψ0,σq2
0ab

,q2
0a

=

[
In 0n×n 0n×n

0n×n In 0n×n

]
,

Ψ0,σq2
0ab

,q2
0b

=

[
In 0n×n 0n×n

0n×n 0n×n In

]
,

Ψ0,σq1
0b

,q2
0b

= I2n×2n,

Ψ0,σq ,q =
[
In 0n×n

]
,

(68)
1
0b

1
0

8

Furthermore, the matrix coefficient C0,σ2 of the switching cost at
t2 for each case is defined as

C0,σ2 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

C0,σq1
0a

,q2
0a

= 02n×2n,

C0,σq1
0a

,q1
0

= M
q1
0a

0 (n + 1 : 2n),

C0,σq2
0ab

,q2
0a

= M
q2
0ab

0 (2n + 1 : 3n),

C0,σq2
0ab

,q2
0b

= M
q2
0ab

0 (n + 1 : 2n),

C0,σq1
0b

,q2
0b

= 02n×2n,

C0,q1
0b

,q1
0

= M
q1
0b

0 (n + 1 : 2n).

(69)

The values of the major agent’s continuous state before and after
the switching at t3 satisfy the following jump map

xex,Q3
0 (t3) = Ψ0,σ3x

ex,Q2
0 (t3−), (70)

Ψ0,σ3 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Ψ0,σq2

0a
,q2
0

=
[
In 0n×n

]
,

Ψ0,σq1
0

,q2
0

= In,

Ψ0,σq2
0b

,q2
0

=
[
In 0n×n

]
.

(71)

Accordingly, the matrix coefficient C0,3 of the switching cost at t3
for each case is given by

C0,σ3 =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
C0,σq2

0a
,q2
0

= M
q2
0a

0 (n + 1 : 2n),

C0,σq1
0

,q2
0

= 0n×n,

C0,σq2
0b

,q2
0

= M
q2
0b

0 (n + 1 : 2n).

(72)

Notice that some of the transitions of (60), (67), (70) are between
the spaces of the same dimension such as (61) while other tran-
sitions may be accompanied by changes in the dimension of the
state space, e.g. (63) is a mapping from R3n into R2n. These di-
mension changes are permitted in the stochastic hybrid systems
framework of Pakniyat and Caines (2016, 2017a) (see Pakniyat
and Caines (2017b) for another motivating example for change
of dimension at switching).

4.2.3. Best response hybrid control action
To obtain the best response hybrid control action for the major

agent in the infinite population, we utilize Theorem 1 in Section 2
developed for single agent hybrid LQG optimal control problems.
By the definition of the terms D

Qj
0 , they automatically satisfy

the condition (3) (see Section 2), or equivalently condition A1
in Pakniyat and Caines (2016, Eq. (3)) as

D
Qj
0 = Ψ0,σjD

Qj−1
0 , j = 1, 2, 3, (73)

holds for all the jump transition maps introduced in this section.
Moreover, it is assumed conditions (8)–(10) in Section 2 hold.
Therefore, the optimal controlled switching times for the major
agent are Ft-independent. Then an application of the hybrid
LQG optimal control theory (see Theorem 1) yields the infinite
population best response hybrid control action for discrete states
{Q0, . . . ,Q3} as in

u
Qj,◦

0 (t) = −[R
Qj
0 ]

−1
[B

Qj
0 ]

TΠ
Qj
0 (t) x

ex,Qj
0 (t), (74)

−Π̇
Qj
0 = Π

Qj
0 A

Qj
0 + [A

Qj
0 ]

TΠ
Qj
0

− Π
Qj
0 B

Qj
0 [R

Qj
0 ]

−1
[B

Qj
0 ]

TΠ
Qj
0 + P

Qj
0 , (75)

subject to the terminal and boundary conditions
Q3 ¯Q3
Π0 (T ) = P0 , (76)
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Qj−1
0 (tj) = Ψ T

0,σjΠ
Qj
0 (tj)Ψ0,σj + C0,σj , (77)

Qj−1
0 + Π

Qj−1
0 (tj)A

Qj−1
0 + [A

Qj−1
0 ]

TΠ
Qj−1
0 (tj)

−Π
Qj−1
0 (tj)B

Qj−1
0 [R

Qj−1
0 ]

−1
[B

Qj−1
0 ]

TΠ
Qj−1
0 (tj)

= Ψ T
0,σj

(
P
Qj
0 + Π

Qj
0 (tj)A

Qj
0 + [A

Qj
0 ]

TΠ
Qj
0 (tj)

−Π
Qj
0 (tj)B

Qj
0 [R

Qj
0 ]

−1
[B

Qj
0 ]

TΠ
Qj
0 (tj)

)
Ψ0,σj +

∂C0,σj

∂t

⏐⏐⏐
t=tj

, (78)

here tj, j = 1, 2, 3, indicate the times of change in the system
ue to the major agent’s switching of dynamics or cessation of
ubpopulations of minor agents.

.3. Minor agents: Infinite population

.3.1. Hybrid dynamics and costs
The extended dynamics for a generic minor agent A k

i , 1 ≤ i ≤

, in the population k ≜ a, b, with the extended state x
ex,Qj
i has a

general form as in

dx
ex,Qj
i = (A

Qj
k x

ex,Qj
i + M

Qj
k + B

Qj
k uQi

i )dt + D
Qj
k dW

Qj
i , (79)

where

A
Qj
k =

[
Ak

[
Gk πQj ⊗ Fk

]
0•×• A

Qj
0 − B

Qj
0 R−1

0,Qj
BT
0,Qj

Π
Qj
0

]
, M

Qj
k =

[
0n×1

M
Qj
0

]
,

B
Qj
k =

[
Bk

0•×•

]
, D

Qj
k =

[
Dk 0•×•

0•×• D
Qj
0

]
, W

Qj
i =

[
wi

w
Qj
0

]
. (80)

otice that in (79) the major agent’s closed-loop dynamics at
iscrete state Qj, 0 ≤ j ≤ 3, given by (37) is used to derive the

extended dynamics for minor agent A k
i at discrete state Qj, 0 ≤

j ≤ 3. Similar to the major agent’s case, 0•×• in (80) denotes a
zero matrix of appropriate dimension.

The cost functional for the extended minor agent A k
i ’s hybrid

system is given by

J∞,k
i (ui, u0) =

1
2E

[
∥xex,Qℓ

i (t is)∥
2
P̄
Qℓ
k

+

ℓ∑
j=1

∥x
ex,Qj
i (t−j )∥2

Ck
i,σj

+

ℓ∑
j=0

∫ tj+1

tj

(
∥x

ex,Qj
i (s)∥2

P
Qj
k

+ ∥u
Qj
i (s)∥2

Rk

)
ds

]
, (81)

where Qℓ denotes the discrete state after which minor agent
A k

i quits the system at the individual stopping time t is and
ℓ ∈ {0, 1, 2} denotes the index of the associate discrete state. The
weight matrices associated with the terminal cost (first term) and
the running cost (third term) in (81) are, respectively, given by

P̄Qℓ

k = P̄k,

P
Qj
k = [In, −Hk

1, −πQj ⊗ Hk
2]

TPk[In, −Hk
1, −πQj ⊗ Hk

2],

P̄
Qj
k = [In, −Hk

1, −πQj ⊗ Hk
2]

T P̄k[In, −Hk
1, −πQj ⊗ Hk

2], (82)

where P̄
Qj
k shall be used to specify the weight matrix Ck

i,σj
asso-

ciated with the switching cost (second term) in (81) in a similar
manner to that of the major agent in Section 4.2.2. The values of
minor agent A k

i continuous state before and after the switching
time tj satisfy the following jump transition map

x
ex,Qj
i (tj) = Ψ k

i,σjx
ex,Qj−1
i (tj−). (83)

The realizations of Ck
i,σj

and Ψ k
i,σj

associated with the switching
times t , j = 1, 2, 3, are presented in Appendix B.
j

9

4.3.2. Best response hybrid control actions
The optimal stopping problem for a minor agent is equivalent

to a hybrid optimal control problem in which the dynamics and
costs become zero after stopping. Let us assume that minor agent
A k

i stops at time tks after the discrete state Qℓ, ℓ ∈ {0, 1, 2}.
The definitions for D

Qj
k directly result in the satisfaction of condi-

tion (3) (see Section 2), or equivalently condition A1 in Pakniyat
and Caines (2016, Eq. (3)), i.e.

D
Qj
k = Ψ k

i,σjD
Qj−1
k , j ∈ {1, . . . , ℓ}, k ≜ a, b. (84)

Furthermore, it is assumed in this paper that conditions (8)–(10),
and (16)–(18), respectively, hold on the parameters Ak,Bk,Dk,
P̄k,Pk, Ψ k

i,σ , etc., of the extended system and, consequently, the
optimal stopping times tks and switching times tj exist and are
determined by the solutions to (8)–(10), and (16)–(18). Moreover,
the optimal stopping and switching times are Ft-independent
and depend only on the dynamical parameters; this implies that
all minor agents of the same type switch and stop at the same
instant. Then the application of the results of Theorem 1 and
Corollary 2 yields the infinite population best response strategies
for the discrete states {Q0, . . . ,Qℓ} given by

u
Qj,◦

i (t) = −R−1
k [B

Qj
k ]

TΠ
Qj
k (t) x

ex,Qj
i (t), (85)

with

− Π̇
Qj
k = Π

Qj
k A

Qj
k + AT

k,Qj
Π

Qj
k − Π

Qj
k B

Qj
k R−1

k [B
Qj
k ]

TΠ
Qj
k + P

Qj
k (86)

subject to the terminal conditions

Π
Qℓ

k (tks ) = P̄Qℓ

k , (87)(
PQℓ

k + P̄Qℓ

k AQℓ

k + AT
k,Qℓ

P̄Qℓ

k − P̄Qℓ

k BQℓ

k R−1
k [BQℓ

k ]
T P̄Qℓ

k

)
t=tks

=
∂Ck

i,σℓ

∂t

⏐⏐⏐
t=tks

, (88)

nd the boundary conditions
Qj−1
k (tj) = [Ψ k

i,σj ]
T
Π

Qj
k (tj)Ψ k

i,σj + Ck
i,σj , (89)

Qj−1
k + Π

Qj−1
k (tj)A

Qj−1
k + [A

Qj−1
k ]

TΠ
Qj−1
k (tj)

−Π
Qj−1
k (tj)B

Qj−1
k R−1

k [B
Qj−1
k ]

TΠ
Qj−1
k (tj)

= [Ψ k
i,σj ]

T
(
P
Qj
k + Π

Qj
k (tj)A

Qj
k + [A

Qj
k ]

TΠ
Qj
k (tj)

−Π
Qj
k (tj)B

Qj
k R−1

k [B
Qj
k ]

TΠ
Qj
k (tj)

)
Ψ k

i,σj +
∂Ck

i,σj

∂t

⏐⏐⏐
t=tj

, (90)

f tj < tks , where {tj, j ∈ {1, . . . , ℓ}} indicate the times of change
n the system due to the major agent’s switching of dynamics or
essation of the other subpopulation of minor agents. We observe
hat for the case where the subpopulation k, k ≜ a, b, stops at
ime t1, the boundary conditions (89) and (90) are irrelevant for
he agents belonging to the quitting subpopulation.

.4. Hybrid mean field consistency equations and ε-Nash equilib-
ium

Let us define

Π
Qj
k =

⎡⎢⎣Π
Qj
k,11 Π

Qj
k,12 Π

Qj
k,13

Π
Qj
k,21 Π

Qj
k,22 Π

Qj
k,23

Π
Qj
k,31 Π

Qj
k,32 Π

Qj
k,33

⎤⎥⎦ , k ≜ a, b,

eQj
k =

⎧⎨⎩
In if x̄Qj = x̄k,
[In, 0n×n] if {x̄Qj ̸= x̄k} ∧ {k = a},

Qj

(91)

[0n×n, In] if {x̄ ̸= x̄k} ∧ {k = b}.
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e substitute the set of obtained best response strategies (85)
n (26). Then we take an average over the corresponding sub-
opulation and take its limit as Nt → ∞. In order to generate

a mean field game equilibrium the obtained equation and (30)
must correspond to the same dynamical system generating the
mean field. Consequently we obtain the Consistency Condition
equations, determining ĀQj , ḠQj , m̄Qj given by

Π̇
Qj
0 = Π

Qj
0 B

Qj
0 R−1

0 [B
Qj
0 ]

TΠ
Qj
0 − Π

Qj
0 A

Qj
0 − [A

Qj
0 ]

TΠ
Qj
0 − P

Qj
0 ,

˙
Qj
k = Π

Qj
k B

Qj
k R−1

k [B
Qj
k ]

TΠ
Qj
k − Π

Qj
k A

Qj
k − [A

Qj
k ]

TΠ
Qj
k − P

Qj
k ,

¯
Qj
k = [Ak − BkR−1

k BT
kΠ

Qj
k,11]e

Qj
k + πQj ⊗ Fk − BkR−1

k BT
kΠ

Qj
k,13,

¯
Qj
k = Gk − BkR−1

k BT
kΠ

Qj
k,12,

¯
Qj
k = 0, (92)

or each discrete state Qj, 0 ≤ j ≤ 3, and the corresponding
opulation k, k ≜ a, b. The set of Eqs. (92) forms a fixed-point
roblem for each discrete state Qj, 1 ≤ j ≤ 3, that should be
olved by each minor agent in order to compute the matrices in
he mean field dynamics.

ssumption 9. The parameters in (22)–(27) belong to a non-
mpty set which yields the existence and uniqueness of the
olutions (Π

Qj
0 , Π

Qj
k , Ā

Qj
k , Ḡ

Qj
k , m̄

Qj
k ) to the resulting set of mean

ield fixed-point Eqs. (92) at each discrete state Q j, 0 ≤ j ≤ 3.

The following theorem links the infinite population equilibria
o the finite population case.

heorem 3 (ε-Nash Equilibrium for Hybrid LQG MFGs). Subject to
ssumptions 1–9, and subject to the assumption that the Eqs. (8)–
10), and (16)–(18) are satisfied, the Ft-invariant optimal switching
nd stopping times t1, t2, t3 exist and are uniquely determined. In
hat case system Eqs. (37)–(40), (79)–(82), together with the set
f mean field Eqs. (92) generate a set of control laws which yields
he infinite population Nash equilibrium. When the set of infinite
opulation control laws U

Nt
MF ≜ {u

Qj,◦

i ; 0 ≤ i ≤ Nt}, 0 ≤ j ≤ 3, 1 ≤

t ≤ N < ∞, given by (74), (85) is applied to the finite population
ystem (22), (26), it yields an ε-Nash equilibrium for all ε, i.e. for all
> 0, there exists N(ε) such that for all N ≥ N(ε);

Qj,N
i (u

Qj,◦

i , u
Qj,◦

−i ) − ε ≤ inf
ui∈U

N,L
g

J
Qj,N
i (ui, u

Qj,◦

−i )

≤ J
Qj,N
i (u

Qj,◦

i , u
Qj,◦

−i ),

here J
Qj,N
i (., .) denotes the finite-population cost functional of the

eneric agent Ai at the discrete state Qj. □

roof. See Appendix C.

.5. Hybrid dynamic programming methodology

The order of the switching and stopping events Q0,Q1,Q2,Q3,
f all of them occur, is assumed to be fixed. As depicted in Fig. 1
nd explained in Section 3.2, there are three possible realizations
or each of the discrete states Q1 and Q2. The optimal sequence
f switching, that is to say the discrete trajectory of the system,
s determined via dynamic programming backward propagation.
or this purpose, the steps below are followed.

tep 1. (Solving backwards for transitions from Q3 to Q2). Eq. (75)
s solved for Π

Q3
0 (t) backward in time, subject to the terminal

ondition (76). Then the values for Π
Q3
0 (t) are substituted in the

ight hand side of (77) to obtain Π
Q2
0 (t) for all three realizations

f Ψ and C given by (71) and (72), respectively. Next,
0,σ3 0,σ3

10
Fig. 2. Hybrid Automata Diagram with a single major agent and two populations
of minor agents with stopping times.

we substitute Π
Q2
0 (t) and the corresponding Ψ0,σ3 and C0,σ3 in

78). Then the time instant at which (78) holds determines t3
or the transition from the corresponding realization of Q2 to
3. The transitions from Q2 ≜ q2

0b
to Q3 or from Q2 ≜ q2

0a
to

3 are equivalent to the stopping of subpopulation Ab or Aa,
espectively, at the obtained switching time t3. Hence Eq. (88)
ust also hold at the associated t3 for each of the mentioned
ases. Similarly, for the transition from Q2 ≜ q1

0
to Q3 both (78)

nd (90) must hold at the same time.
We observe that if (78) does not hold for any of the realiza-

ions of Q2 = {q2
0a

, q1
0
, q2

0b
}, then we conclude that Q3 is not the

inal discrete state of the system. Subsequently, we start from
tep 2 solving the dynamic programming backward in time from
= T .

tep 2. (Solving backwards for transitions from Q2 to Q1). Starting
rom the obtained realizations of Q2 in Step 1 and the correspond-
ng switching times t3, we follow a similar approach as in Step1 to
etermine the realizations of Q1 which may take place and their
orresponding switching times t2. More specifically, Eq. (75) is
olved with the boundary (terminal) condition (77) with j = 3
t t3. Then, for example, to determine from Q2 ≜ q2

0b
which of

either of or neither of) the transitions to Q1 ≜ q2
0ab

and Q1 ≜ q1
0b

ay occur, Eqs. (78), (88) and (78), (90) are checked, respectively.

tep 3. (Solving backwards for transitions from Q1 to Q0). Similar to
he previous steps, starting from the cases for Q1 and the value
or t2 determined in Step 2, it is investigated using Eqs. (78), (88)
nd (90) whether the transition to Q0 may occur or not and, if
ffirmative, the corresponding switching time t1 is calculated.

tep 4. (Specifying the optimal discrete sequence). In case the Steps
–3 yield more than one sequence for the discrete state trajectory,
he optimal sequence is determined by comparing the value
unctions along the obtained discrete state sequences with the
alue function for the case where no switching or stopping event
appens. Finally it should be noted that if Steps 1–3 result in no
ealized discrete trajectory, then the system may remain in the
iscrete state Q0 over the interval [0, T ].

. Simulations

Consider a system of 100 minor agents with two types A a and
b and a single major agent A0. The minor agents are provided
ith the option to quit if it is optimal for them to do so. Since
he major agent is not permitted to switch in this example,
he system has three discrete states Q0,Q1,Q2, which index the
stopping of one or both subpopulations as illustrated in Fig. 2.

To clearly depict the impact of subpopulations’ stopping on
the control action and the trajectory of other agents, time-varying
system matrices for a generic minor agent in subpopulation A a,
with Na = 50, are defined as

Aa ≜

[
2e−t e−0.5t

−0.5t −t

]
, Ba ≜

[
1

]
,
e 2e 0.1
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Fig. 3. The control actions for a single realization of the major agent, 10 sample
minor agents of type A a , and 10 sample minor agents of type A b in discrete
states Q0 , Q1 , Q2 .

Fig. 4. The state trajectories for a single realization of the major agent, 10
sample minor agents of type A a , and 10 sample minor agents of type A b in
iscrete states Q0 , Q1 , Q2 .

nd for a generic minor agent in subpopulation A b, with Nb = 50,
re given by

b ≜

[
5e−1.5t cos(t) 5e−2t

5e−2t sin(t) 5e−1.5t

]
, Bb ≜

[
0
0.1

]
,

nd for the major agent are given by

0 ≜

[
2e−t e−t

e−0.5t 2e−0.5t

]
, B0 ≜

[
0.1
0.1

]
.

The parameters used in the simulation are: tfinal = 18 sec, ∆t =

.01 sec, σ0 = 0.015, σa = σb = 0.05, H0 = 0.6 × I2, Ha
1 =

b
1 = 0.2 × I2, Ha

2 = Hb
2 = 0.02 × I2, Ga = Gb = 02×2. We note

hat Assumptions 1–4 are satisfied as the parameters are bounded
nalytic functions of time. Then following the steps in Section 4.5
he optimal control actions and state trajectories for a single
ealization in discrete states Q0, Q1, Q2 for the entire population of
01 agents are obtained. In Figs. 3 and 4 only 10 minor agents are
hown for the sake of clarity. The subpopulations A b and A a stop,
espectively, at t1 = 6 sec and t2 = 12 sec. This, in particular,
mpacts the behaviour of the major agent at the stopping times
and t as illustrated in Figs. 3 and 4.
1 2

11
. Conclusions

A hybrid mean field game theory has been established here for
class of Major–Minor LQG MFG systems for which controlled

witching and stopping times are state and trajectory indepen-
ent, and only depend on the dynamical and cost functional
arameters of each agent. As a result, all agents of the same
ype would stop or switch at the same time. It is of significant
nterest to develop and extend the theory to account for switch-
ngs and stoppings at individual rates and/or upon arrival on
witching manifolds, where individuals in subpopulations may
uit or switch to alternative dynamics at different times. This is
f particular importance in the modelling of optimal execution
roblems where traders stop or switch after reaching a spe-
ific number of shares. Another future direction is the tractable
ormulation for several subpopulations, including a systematic
ethodology for treating more complex discrete state sequence

attices.

ppendix A. Proof of Theorem 1

We invoke the Stochastic Hybrid Minimum Principle (Pakniyat
Caines, 2016) to form the family of system Hamiltonians as

Qj
(
xQj , uQj , λQj , KQj

)
=

[
KQj

]T
DQj +

1
2

(xQj (t)
2
PQj (t)

+
uQj (t)

2
RQj (t)

)
+

[
λQj

]T (
AQjxQj + BQjuQj

)
, (A.1)

t immediately follows that

rgmin
uQj∈R

mQj

HQj
(
xQj , uQj , λQj , KQj

)
= −

[
RQj

]−1 [
BQj

]T
λQj . (A.2)

In order to find conditions under which the adjoint processes take
the form λQj (t) = ΠQj (t) xQj (t) we begin with the final discrete
state QL, and follow similar arguments as those in classical LQG
theory (see e.g. Yong and Zhou (1999, Chapter 6)), to obtain

λQL (T ) = ΠQL (t) xQL (T ) =
1
2

∂

∂x
∥x (T )∥2

P̄QL (T )
, (A.3)

dλQL = −
∂HQL

∂x

(
xQL , uQL , λQL , KQL

)
dt + KQLdw

= −

(
PQ xQL +

[
AQL

]T
λQL

)
dt + KQLdw, (A.4)

with KQL (t) = ΠQL (t)DQL .
Within the (backward) induction procedure, we hypothesize

that λQj+1 (t) = ΠQj+1 (t) xQj+1 (t) holds and determine condi-
tions under which λQj (t) = ΠQj (t) xQj (t) is concluded. To this
end, we note that from Pakniyat and Caines (2016, Theorem 1)
(see also Pakniyat & Caines, 2017a) the adjoint processes and
Hamiltonians must satisfy

λQj
(
tj+1

)
=

[
Ψσj

]T
λQj+1

(
tj+1+

)
+ Cσjx

Qj (tj+1), (A.5)

H
Qj(
x
Qj ,u

o,Qj ,λ
Qj ,K

Qj
) −

[
KQj

]T
DQj−

1
2

∂

∂t

xQj
2
C(t)
σj

⏐⏐⏐⏐tωj+1−

H
Qj+1(
x
Qj+1 ,u

o,Qj+1 ,λ
Qj+1 ,K

Qj+1
) −

[
KQj+1

]T
DQj+1

⏐⏐⏐⏐tωj+1
. (A.6)

The substitution of the hypothesized Riccati forms into (A.5)
yields

ΠQj
(
tj+1

)
xQj

(
tj+1−

)
=

[
Ψσj

]T
ΠQj+1

(
tj+1

)
xQj+1

(
tj+1

)
+ Cσjx

Qj (tj+1−)[ ]T Qj+1
( ) Qj Qj
= Ψσj Π tj+1 Ψσjx (tj+1−) + Cσjx (tj+1−) (A.7)
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a
t
Π

H

a
(

Ψ

nd, therefore, if (7) holds, then (A.7) is obtained regardless of
he value of xQj (tj+1−). Moreover, the substitution of λQ (t) =
Q (t) xQ (t) into (A.2), and subsequently in (A.1), yields
Q (

x, uo, λ, KQ )
−

[
KQ ]T

DQ

=
1
2

∥x∥2
PQ +ΠQ AQ +[AQ ]TΠQ −ΠQ BQ [RQ ]−1[BQ ]TΠQ (A.8)

nd in particular, at the switching instant tj+1, the substitution of
A.8) and (2) into (A.6) result in

1
2 [x

Qj
(tj+1−)]

T
(
PQj + Π

Qj
(tj+1)

AQj +
[
AQj

]T
Π

Qj
(tj+1)

−Π
Qj
(tj+1)

BQj
[
RQj

]−1 [
BQj

]T
Π

Qj
(tj+1)

−
∂Cσj (t)

∂t

⏐⏐⏐⏐
t=tj+1

)
x
Qj
(tj+1−)

=
1
2 [x

Qj+1
(tj+1)

]
T
(
PQj+1 + Π

Qj+1
(tj+1)

AQj+1 +
[
AQj+1

]T
Π

Qj+1
(tj+1)

−Π
Qj+1
(tj+1)

BQj+1
[
RQj+1

]−1 [
BQj+1

]T
Π

Qj+1
(tj+1)

)
x
Qj+1
(tj+1)

=
1
2 [Ψσjx

Qj
(tj+1−)]

T
(
PQj+1 + Π

Qj+1
(tj+1)

AQj+1 +
[
AQj+1

]T
Π

Qj+1
(tj+1)

−Π
Qj+1
(tj+1)

BQj+1
[
RQj+1

]−1 [
BQj+1

]T
Π

Qj+1
(tj+1)

)
Ψσjx

Qj
(tj+1−). (A.9)

In particular, if (8) holds, then (A.9) holds independent of the
realization for xQj (tj+1−) and thus, independent of Ft . Since the
satisfaction of (7) and (8) lead to the satisfaction of (A.5) and (A.6)
with Ft-independence, then the induction hypothesis is true due
to the uniqueness of the solution to the backward differential
Eqs. (A.4). Moreover, (9) and (10) ensure that such a switching
instant is unique and therefore the associated Riccati equations
and switching conditions globally correspond to a unique optimal
strategy.

Appendix B. Jump transition maps and switching costs for
minor agents

We define the notation M
Qj
k (l : m), k ≜ a, b, 0 ≤ j ≤ 3,

which shall be used to identify the switching cost associated with
switching time tj, 1 ≤ j ≤ 3, i.e., the cost incurred when a change
in the system happens. Matrix M

Qj
k (l : m) is made by making all

the entires of P̄
Qj
k zero except those associated with its l-th tom-th

columns and rows, hence it has the same size as P̄
Qj
k , i.e.

M
Qj
k (l : m) =

⎡⎣
P̄
Qj
k (:, l : m)
0 0

0 0

⎤⎦
size(P̄

Qj
k )

}
P̄
Qj
k (l :m, :) (B.1)

where P̄
Qj
k (:, l : m) and P̄

Qj
k (l : m, :), respectively, denote lth to mth

columns and rows of P̄
Qj
k .

The values of minor agent A k
i continuous state before and

after the switching time tj satisfy the following jump transition
map

x
ex,Qj
i (tj) = Ψ k

i,σjx
ex,Qj−1
i (tj−), (B.2)

where for k ≜ a (due to space limitation k ≜ b is skipped)

Ψ a
i,σ1 =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Ψ a
i,σq1

0ab
,q2
0ab

= I3n×3n,

Ψ a
i,σq1

0ab
,q1
0a

=

[
In 0n×n 0n×n

0n×n In 0n×n

]
,

Ψ a
i,σq ,q

=
[
0n×n 0n×n 0n×n

]
.

(B.3)
1
0ab

1
0b

12
a
i,σ2 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ψ a
i,σq1

0a
q2
0a

= I2n×2n,

Ψ a
i,σq1

0a
q1
0

=
[
0n×n 0n×n

]
,

Ψ a
i,σq2

0ab
q2
0a

=

[
In 0n×n 0n×n

0n×n In 0n×n

]
,

Ψ a
i,σq2

0ab
q2
0b

=
[
0n×n 0n×n 0n×n

]
.

(B.4)

Ψ a
i,σ3 = Ψ a

i,σq2
0a

,q2
0

=
[
0n×n 0n×n 0n×n

]
. (B.5)

The corresponding switching cost weight matrices Ck
i,σj

, k ≜ a, are
given by

Ca
i,σ1 =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Ca
i,σq1

0ab
,q2
0ab

= 03n×3n,

Ca
i,σq1

0ab
,q1
0a

= M
q1
0ab

a (3n + 1 : 4n),

Ca
i,σq1

0ab
,q1
0b

= P̄
q1
0ab

a ,

(B.6)

Ca
i,σ2 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ca
i,σq1

0a
,q2
0a

= 02n×2n,

Ca
i,σq1

0a
,q1
0

= P̄
q1
0a

a ,

Ca
i,σq2

0ab
,q2
0a

= M
q2
0ab

a (3n + 1 : 4n),

Ca
i,σq2

0ab
,q2
0b

= P̄
q2
0ab

a ,

(B.7)

Ca
i,σ3 = Ca

i,σq2
0a

q2
0

= P̄
q2
0a

a . (B.8)

Appendix C. Proof of Theorem 3

The ε-Nash property can be shown in two steps for the major
agent and a generic minor agent, respectively. Due to space
limitation we detail the proof for the major agent and that of a
minor agent will follow in the same manner.

(i) Suppose that there exists a sequence {δn}
N
n=1 such that δN →

0 as N → ∞, and
⏐⏐⏐Nk
N − πk

⏐⏐⏐ = o(δN ), for all k ≜ a, b. Given
that all minor agents A k

i , 1 ≤ i ≤ N , are using the optimal
control actions U

Nt
MF ≜ {u

Qj
i ; 1 ≤ i ≤ Nt}, 1 ≤ Nt ≤ N < ∞,

given by (85), and the major agent is using an arbitrary
control action u0 ∈ U N,L

g , we show that

(a) E∥x
Qj,N
0 − x

Qj
0 ∥

2
≤ C(o( 1

N ) + o(δ2N )), (C.1)

(b) E∥x(N
Qj )

− x̄Qj∥
2

≤ C(o( 1
N ) + o(δ2N )), (C.2)

(c)
⏐⏐⏐JQj,N
0 (u0, u

Qj,◦

−0 ) − J
Qj,∞

0 (u0)
⏐⏐⏐

≤ C(o( 1
√
N
) + o(δN )), (C.3)

where x(N
Qj ), x

Qj,N
0 and x

Qj
0 denote, respectively, the empirical state

average, the major agent’s state in the finite-population case, and
the major agent’s state in the infinite-population case, at the
discrete state Qj. Moreover, J

Qj,N
0 (., .) and J

Qj,∞

0 (.) denote, respec-
tively, the major agent’s cost functional in the finite-population
and the infinite-population cases at the discrete state Qj. The
dynamics governing the major agent in the finite-population and
the infinite-population cases for an arbitrary control action u0 ∈

U N,L
g are, respectively, given by

dx
Qj,N

= (A
Qjx

Qj,N
+ B

Qju + F
Qjx(N

Qj ))dt + D
Qjdw ,
0 0 0 0 0 0 0 0
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d

I
t
t

x
Qj
0 = (A

Qj
0 x

Qj
0 + B

Qj
0 u0 + πQj ⊗ F

Qj
0 x̄Qj )dt + D

Qj
0 dw0.

Following along the lines of the proofs of Theorem 6 and Propo-
sition 8 in Huang (2010), we can show that (C.1) holds for all
Qj, 0 ≤ j ≤ 3. Furthermore, the difference between the major
agent’s cost functional in the finite-population and the infinite-
population cases is given by

J
Qj,N
0 − J

Qj,∞

0 =
1
2E

[
∥x

Qj,N
0 (T )∥2

P̄
Qj
0

− ∥x
Qj
0 (T )∥2

P̄
Qj
0

+

∫ T

0

(
∥x

Qj,N
0 (s) − H

Qj
0 x(N

Qj )(s)∥2

P
Qj
0

−∥x
Qj
0 (s) − H

Qj
0 x̄Qj (s)∥2

P
Qj
0

)
ds

]

= E
[

∥x
Qj,N
0 (T ) − x

Qj
0 (T )∥2

P̄
Qj
0

+ 2[x
Qj
0 (T )]T P̄

Qj
0

×(x
Qj,N
0 (T ) − x

Qj
0 (T )) +

∫ T

0

(
∥x

Qj,N
0 (s) − x

Qj
0 (s)∥2

P
Qj
0

+2[x
Qj
0 (s)]TP

Qj
0 (x

Qj,N
0 (s) − x

Qj
0 (s))

+∥x(N
Qj )(s) − x̄Qj (s)∥2

(H
Qj
0 )T P

Qj
0 H

Qj
0

+2[H
Qj
0 x̄Qj (s)]TP

Qj
0 H

Qj
0 (x(N

Qj )(s)
− x̄Qj (s))

−2(x
Qj,N
0 )TP

Qj
0 H

Qj
0 (x(N

Qj )
− x̄Qj )

−2(x̄Qj )TP
Qj
0 H

Qj
0 (x

Qj,N
0 − x

Qj
0 )

)
ds

]
. (C.4)

Using the Cauchy–Schwarz inequality, we can write

E
[
(x

Qj
0 )TP

Qj
0 (x

Qj,N
0 − x

Qj
0 )

]
≤ C E

[
∥x

Qj
0 ∥

2] 1
2 E

[
∥x

Qj,N
0 − x

Qj
0 ∥

2] 1
2 . (C.5)

n a similar manner we can apply the Cauchy–Schwarz inequality
o every cross term in (C.4). Hence from (C.1)–(C.2), every cross
erm is at most of order (o( 1

√
N
)+ o(δN )), and every squared term

is of order (o( 1
N ) + o(δ2N )). Therefore, we obtain (C.3).

(ii) From (C.3) we have

−o(δN ) − o( 1
√
N
) ≤ J

Qj,N
0 (u0, u

Qj,◦

−0 ) − J
Qj,∞

0 (u0)

≤ o(δN ) + o( 1
√
N
). (C.6)

Since (C.6) holds for every u0, from its right-hand side

J
Qj,N
0 (u

Qj,◦

0 , u
Qj,◦

−0 ) − o(δN ) − o( 1
√
N
) ≤ J

Qj,∞

0 (u
Qj,◦

0 ), (C.7)

and from its left-hand side we have

−o(δN ) − o( 1
√
N
) ≤ inf

u0
J
Qj,N
0 (u0, u

Qj,◦

−0 ) − inf
u0

J
Qj,∞

0 (u0). (C.8)

We then isolate infu0 J
Qj,N
0 (u0, u

Qj,◦

−0 ) on the right-hand side of
(C.8) and use (C.7) to write

J
Qj,N
0 (u

Qj,◦

0 , u
Qj,◦

−0 ) − 2o(δN ) − 2o( 1
√
N
)

≤ inf J
Qj,N
0 (u0, u

Qj,◦

−0 ). □

u0

13
References

Aghayeva, Charkaz, & Abushov, Qurban (2011). The maximum principle for the
nonlinear stochastic optimal control problem of switching systems. Global
Optimization, 56(2), 341–352.

Bensoussan, A., Chau, M. H. M., Lai, Y., & Yam, S. C. P. (2017). Linear-quadratic
mean field Stackelberg games with state and control delays. SIAM Journal on
Control and Optimization, 55(4), 2748–2781.

Bensoussan, Alain, Frehse, Jens, & Yam, Phillip (2013). Mean field games and mean
field type control theory. New York: Springer-Verlag.

Bensoussan, A., & Menaldi, J. L. (1997). Hybrid control and dynamic pro-
gramming. Dynamics of Continuous, Discrete and Impulsive Systems Series B:
Application and Algorithm, 3(4), 395–442.

Bensoussan, A., & Menaldi, J. L. (2000). Stochastic hybrid control. Mathematical
Analysis and Applications, 249(1), 261–288.

Bouveret, Géraldine, Dumitrescu, Roxana, & Tankov, Peter (2020). Mean-field
games of optimal stopping: A relaxed solution approach. SIAM Journal on
Control and Optimization, 58(4), 1795–1821.

Caines, Peter E., & Kizilkale, Arman C. (2017). ε-Nash Equilibria for partially
observed LQG mean field games with major player. IEEE Transactions on
Automatic Control, 62(7), 3225–3234.

Cardaliaguet, Pierre, Cirant, Marco, & Porretta, Alessio (2018). Remarks on Nash
equilibria in mean field game models with a major player. arXiv.

Cardaliaguet, Pierre, Delarue, François, Lasry, Jean-Michel, & Lions, Pierre-Louis
(2019). The master equation and the convergence problem in mean field games:
(AMS-201), Vol. 2. Princeton University Press.

Carmona, René (2020). Applications of mean field games in financial engineering
and economic theory. arXiv preprint arXiv:2012.05237.

Carmona, René, & Delarue, François (2018). Probabilistic theory of mean field
games with applications I-II. Springer.

Carmona, René, & Wang, Peiqi (2017). An alternative approach to mean field
game with major and minor players, and applications to herders impacts.
Applied Mathematics and Optimization, 76(1), 5–27.

Carmona, René, & Zhu, Xiuneng (2016). A probabilistic approach to mean field
games with major and minor players. Annals of Applied Probability, 26(3),
1535–1580.

Casgrain, Philippe, & Jaimungal, Sebastian (2020). Mean-field games with
differing beliefs for algorithmic trading. Mathematical Finance, 30(3),
995–1034.

Firoozi, Dena (2019). Mean field games and optimal execution problems: Hybrid
and partially observed major minor systems (Ph.D. thesis), McGill University.

Firoozi, Dena (2020). LQG mean field games with a major agent: Nash certainty
equivalence versus probabilistic approach. arXiv preprint arXiv:2012.04866.

Firoozi, Dena, & Caines, Peter E. (2017). The execution problem in finance with
major and minor traders: A mean field game formulation. In Joseph Apaloo,
& Bruno Viscolani (Eds.), Advances in dynamic and mean field games: The-
ory, applications, and numerical methods (pp. 107–130). Cham: Springer
International Publishing.

Firoozi, Dena, & Caines, Peter E. (2019). Belief estimation by agents in major
minor LQG mean field games. In Proceedings of the 58th IEEE conference on
decision and control (CDC) (pp. 1615–1622).

Firoozi, Dena, & Caines, Peter E. (2021). ε-Nash Equilibria for major minor LQG
mean field games with partial observations of all agents. IEEE Transactions
on Automatic Control, 66(6), 2778–2786.

Firoozi, Dena, Jaimungal, Sebastian, & Caines, Peter E. (2020). Convex analysis
for LQG systems with applications to major–minor LQG mean–field game
systems. Systems & Control Letters, 142, 104734, (in press).

Firoozi, Dena, Pakniyat, Ali, & Caines, Peter E. (2017). A mean field game - Hybrid
systems approach to optimal execution problems in finance with stopping
times. In Proceedings of the 56th IEEE conference on decision and control (CDC).
Melbourne, Australia (pp. 3144–3151).

Garavello, Mauro, & Piccoli, Benedetto (2005). Hybrid necessary principle. SIAM
Journal on Control and Optimization, 43(5), 1867–1887.

Gomes, Diogo A., Lafleche, Laurent, & Nurbekyan, Levon (2016). A mean-field
game economic growth model. In 2016 American control conference (pp.
4693–4698).

Huang, Minyi (2010). Large-population LQG games involving a major player:
The Nash certainty equivalence principle. SIAM Journal on Control and
Optimization, 48(5), 3318–3353.

Huang, Minyi (2020). Linear-quadratic mean field games with a major player:
Nash certainty equivalence versus master equations. Communications in
Information and Systems, 213–242, Special Issue in Honor of Professor Tyrone

Duncan on the Occasion of His 80th Birthday.

http://refhub.elsevier.com/S0005-1098(22)00089-9/sb1
http://refhub.elsevier.com/S0005-1098(22)00089-9/sb1
http://refhub.elsevier.com/S0005-1098(22)00089-9/sb1
http://refhub.elsevier.com/S0005-1098(22)00089-9/sb1
http://refhub.elsevier.com/S0005-1098(22)00089-9/sb1
http://refhub.elsevier.com/S0005-1098(22)00089-9/sb2
http://refhub.elsevier.com/S0005-1098(22)00089-9/sb2
http://refhub.elsevier.com/S0005-1098(22)00089-9/sb2
http://refhub.elsevier.com/S0005-1098(22)00089-9/sb2
http://refhub.elsevier.com/S0005-1098(22)00089-9/sb2
http://refhub.elsevier.com/S0005-1098(22)00089-9/sb3
http://refhub.elsevier.com/S0005-1098(22)00089-9/sb3
http://refhub.elsevier.com/S0005-1098(22)00089-9/sb3
http://refhub.elsevier.com/S0005-1098(22)00089-9/sb4
http://refhub.elsevier.com/S0005-1098(22)00089-9/sb4
http://refhub.elsevier.com/S0005-1098(22)00089-9/sb4
http://refhub.elsevier.com/S0005-1098(22)00089-9/sb4
http://refhub.elsevier.com/S0005-1098(22)00089-9/sb4
http://refhub.elsevier.com/S0005-1098(22)00089-9/sb5
http://refhub.elsevier.com/S0005-1098(22)00089-9/sb5
http://refhub.elsevier.com/S0005-1098(22)00089-9/sb5
http://refhub.elsevier.com/S0005-1098(22)00089-9/sb6
http://refhub.elsevier.com/S0005-1098(22)00089-9/sb6
http://refhub.elsevier.com/S0005-1098(22)00089-9/sb6
http://refhub.elsevier.com/S0005-1098(22)00089-9/sb6
http://refhub.elsevier.com/S0005-1098(22)00089-9/sb6
http://refhub.elsevier.com/S0005-1098(22)00089-9/sb7
http://refhub.elsevier.com/S0005-1098(22)00089-9/sb7
http://refhub.elsevier.com/S0005-1098(22)00089-9/sb7
http://refhub.elsevier.com/S0005-1098(22)00089-9/sb7
http://refhub.elsevier.com/S0005-1098(22)00089-9/sb7
http://refhub.elsevier.com/S0005-1098(22)00089-9/sb8
http://refhub.elsevier.com/S0005-1098(22)00089-9/sb8
http://refhub.elsevier.com/S0005-1098(22)00089-9/sb8
http://refhub.elsevier.com/S0005-1098(22)00089-9/sb9
http://refhub.elsevier.com/S0005-1098(22)00089-9/sb9
http://refhub.elsevier.com/S0005-1098(22)00089-9/sb9
http://refhub.elsevier.com/S0005-1098(22)00089-9/sb9
http://refhub.elsevier.com/S0005-1098(22)00089-9/sb9
http://arxiv.org/abs/2012.05237
http://refhub.elsevier.com/S0005-1098(22)00089-9/sb11
http://refhub.elsevier.com/S0005-1098(22)00089-9/sb11
http://refhub.elsevier.com/S0005-1098(22)00089-9/sb11
http://refhub.elsevier.com/S0005-1098(22)00089-9/sb12
http://refhub.elsevier.com/S0005-1098(22)00089-9/sb12
http://refhub.elsevier.com/S0005-1098(22)00089-9/sb12
http://refhub.elsevier.com/S0005-1098(22)00089-9/sb12
http://refhub.elsevier.com/S0005-1098(22)00089-9/sb12
http://refhub.elsevier.com/S0005-1098(22)00089-9/sb13
http://refhub.elsevier.com/S0005-1098(22)00089-9/sb13
http://refhub.elsevier.com/S0005-1098(22)00089-9/sb13
http://refhub.elsevier.com/S0005-1098(22)00089-9/sb13
http://refhub.elsevier.com/S0005-1098(22)00089-9/sb13
http://refhub.elsevier.com/S0005-1098(22)00089-9/sb14
http://refhub.elsevier.com/S0005-1098(22)00089-9/sb14
http://refhub.elsevier.com/S0005-1098(22)00089-9/sb14
http://refhub.elsevier.com/S0005-1098(22)00089-9/sb14
http://refhub.elsevier.com/S0005-1098(22)00089-9/sb14
http://refhub.elsevier.com/S0005-1098(22)00089-9/sb15
http://refhub.elsevier.com/S0005-1098(22)00089-9/sb15
http://refhub.elsevier.com/S0005-1098(22)00089-9/sb15
http://arxiv.org/abs/2012.04866
http://refhub.elsevier.com/S0005-1098(22)00089-9/sb17
http://refhub.elsevier.com/S0005-1098(22)00089-9/sb17
http://refhub.elsevier.com/S0005-1098(22)00089-9/sb17
http://refhub.elsevier.com/S0005-1098(22)00089-9/sb17
http://refhub.elsevier.com/S0005-1098(22)00089-9/sb17
http://refhub.elsevier.com/S0005-1098(22)00089-9/sb17
http://refhub.elsevier.com/S0005-1098(22)00089-9/sb17
http://refhub.elsevier.com/S0005-1098(22)00089-9/sb17
http://refhub.elsevier.com/S0005-1098(22)00089-9/sb17
http://refhub.elsevier.com/S0005-1098(22)00089-9/sb19
http://refhub.elsevier.com/S0005-1098(22)00089-9/sb19
http://refhub.elsevier.com/S0005-1098(22)00089-9/sb19
http://refhub.elsevier.com/S0005-1098(22)00089-9/sb19
http://refhub.elsevier.com/S0005-1098(22)00089-9/sb19
http://refhub.elsevier.com/S0005-1098(22)00089-9/sb20
http://refhub.elsevier.com/S0005-1098(22)00089-9/sb20
http://refhub.elsevier.com/S0005-1098(22)00089-9/sb20
http://refhub.elsevier.com/S0005-1098(22)00089-9/sb20
http://refhub.elsevier.com/S0005-1098(22)00089-9/sb20
http://refhub.elsevier.com/S0005-1098(22)00089-9/sb22
http://refhub.elsevier.com/S0005-1098(22)00089-9/sb22
http://refhub.elsevier.com/S0005-1098(22)00089-9/sb22
http://refhub.elsevier.com/S0005-1098(22)00089-9/sb23
http://refhub.elsevier.com/S0005-1098(22)00089-9/sb23
http://refhub.elsevier.com/S0005-1098(22)00089-9/sb23
http://refhub.elsevier.com/S0005-1098(22)00089-9/sb23
http://refhub.elsevier.com/S0005-1098(22)00089-9/sb23
http://refhub.elsevier.com/S0005-1098(22)00089-9/sb24
http://refhub.elsevier.com/S0005-1098(22)00089-9/sb24
http://refhub.elsevier.com/S0005-1098(22)00089-9/sb24
http://refhub.elsevier.com/S0005-1098(22)00089-9/sb24
http://refhub.elsevier.com/S0005-1098(22)00089-9/sb24
http://refhub.elsevier.com/S0005-1098(22)00089-9/sb25
http://refhub.elsevier.com/S0005-1098(22)00089-9/sb25
http://refhub.elsevier.com/S0005-1098(22)00089-9/sb25
http://refhub.elsevier.com/S0005-1098(22)00089-9/sb25
http://refhub.elsevier.com/S0005-1098(22)00089-9/sb25
http://refhub.elsevier.com/S0005-1098(22)00089-9/sb25
http://refhub.elsevier.com/S0005-1098(22)00089-9/sb25


D. Firoozi, A. Pakniyat and P.E. Caines Automatica 141 (2022) 110244

H

H

H

K

L

uang, Minyi, Caines, Peter E., & Malhamé, Roland P. (2003). Individual and mass
behavior in large population stochastic wireless power control problems:
centralized and Nash equilibrium solutions. In Proceedings of the 42nd IEEE
conference on decision and control (CDC). Maui, HI (pp. 98–103).

uang, Minyi, Caines, Peter E., & Malhamé, Roland P. (2007). Large-population
cost-coupled LQG problems with nonuniform agents: individual-mass be-
havior and decentralized ε-Nash equilibria. IEEE Transactions on Automatic
Control, 52(9), 1560–1571.

uang, Minyi, Malhamé, Roland P., & Caines, Peter E. (2006). Large population
stochastic dynamic games: closed-loop McKean-Vlasov systems and the Nash
certainty equivalence principle. Communications in Information and Systems,
6(3), 221–252.

ordonis, Ioannis, & Papavassilopoulos, George P. (2015). LQ Nash games with
random entrance: An infinite horizon major player and minor players of
finite horizons. IEEE Transactions on Automatic Control, 60(6), 1486–1500.

asry, Jean-Michel, & Lions, Pierre-Louis (2006a). Jeux à champ moyen. i - le cas
stationnaire. Comptes Rendus de l’Académie des Sciences, 343, 619–625.

Lasry, Jean-Michel, & Lions, Pierre-Louis (2006b). Jeux à champ moyen. ii -
horizon fini et contrôle optimal. Comptes Rendus de l’Académie des Sciences,
343, 679–684.

Lasry, Jean-Michel, & Lions, Pierre-Louis (2007). Mean field games. Japanese
Journal of Mathematics, 2(1), 229–260.

Lasry, Jean-Michel, & Lions, Pierre-Louis (2018). Mean-field games with a major
player. Comptes Rendus Mathematique, 356(8), 886–890.

Moon, Jun, & Başar, Tamer (2018). Linear quadratic mean field Stackelberg
differential games. Automatica, 97, 200–213.

Nguyen, Son Luu, & Huang, Minyi (2012). Linear-quadratic-Gaussian mixed
games with continuum-parametrized minor players. SIAM Journal on Control
and Optimization, 50(5), 2907–2937.

Nourian, Mojtaba, & Caines, Peter E. (2013). ε-Nash Mean field game theory for
nonlinear stochastic dynamical systems with major and minor agents. SIAM
Journal on Control and Optimization, 51(4), 3302–3331.

Pakniyat, Ali, & Caines, Peter E. (2016). On the stochastic minimum principle
for hybrid systems. In Proceedings of the 55th IEEE conference on decision and
control (CDC) (pp. 1139–1144).

Pakniyat, Ali, & Caines, Peter E. (2017a). A class of linear quadratic Gaus-
sian hybrid optimal control problems with realization–Independent riccati
equations. IFAC-PapersOnLine, 50(1), 2241–2246.

Pakniyat, Ali, & Caines, Peter E. (2017b). Hybrid optimal control of an electric ve-
hicle with a dual-planetary transmission. Nonlinear Analysis. Hybrid Systems,
25, 263–282.

Pakniyat, Ali, & Caines, Peter E. (2017c). On the relation between the minimum
principle and dynamic programming for classical and hybrid control systems.
IEEE Transactions on Automatic Control, 62(9), 4347–4362.

Pakniyat, Ali, & Caines, Peter E. (2021). On the hybrid minimum principle: The
Hamiltonian and adjoint boundary conditions. IEEE Transactions on Automatic
Control, 66(3), 1246–1253.

Şen, Nevroz, & Caines, Peter E. (2016). Mean field game theory with a partially
observed major agent. SIAM Journal on Control and Optimization, 54(6),
3174–3224.

Shaikh, Mohammad S., & Caines, Peter E. (2007). On the hybrid optimal control
problem: theory and algorithms. IEEE Transactions on Automatic Control,
52(9), 1587–1603, Corrigendum: vol. 54, no. 6, pp. 1428, 2009.

Shrivats, Arvind, Firoozi, Dena, & Jaimungal, Sebastian (2022a). A mean-field
game approach to equilibrium pricing in solar renewable energy certificate
markets. Mathematical Finance, (in press), available at arXiv:2003.04938.

Shrivats, Arvind, Firoozi, Dena, & Jaimungal, Sebastian (2022b). Principal agent
mean field games in REC markets. arXiv preprint arXiv:2112.11963.
14
Sussmann, Hector J. (1999). A nonsmooth hybrid maximum principle. In Lecture
notes in control and information sciences, Vol. 246 (pp. 325–354). London:
Springer.

Taringoo, Farzin, & Caines, Peter E. (2013). On the optimal control of impulsive
hybrid systems on Riemannian manifolds. SIAM Journal on Control and
Optimization, 51(4), 3127–3153.

Yong, Jiongmin, & Zhou, Xun Yu (1999). Stochastic controls: Hamiltonian systems
and HJB equations. New York: Springer-Verlag.

Dena Firoozi is an Assistant Professor in the Depart-
ment of Decision Sciences at HEC Montréal (business
school of University of Montreal). Before joining HEC
Montréal, she was a postdoctoral fellow in the De-
partment of Statistical Sciences at the University of
Toronto, Canada, between 2018–2020. She was also
a Ph.D. exchange student in the same program dur-
ing Fall 2017. She completed her Ph.D. in electrical
engineering, systems & control, at McGill University,
Canada, in 2019. She received her M.Sc. degree from
Sharif University of Technology, Iran, in 2011, and her

B.Sc. degree from Shiraz University, Iran, in 2009, both in electrical engineering-
systems & control. Her research interests include mathematical finance, mean
field games, stochastic control and estimation theory.

Ali Pakniyat is an Assistant Professor in the depart-
ment of Mechanical Engineering at the University of
Alabama. He received the B.Sc. degree in Mechanical
Engineering from Shiraz University, the M.Sc. degree
in Mechanical Engineering from Sharif University of
Technology, and the Ph.D. degree in Electrical Engineer-
ing from McGill University. After holding a Lecturer
position at the Electrical and Computer Engineering
department of McGill University, and two postdoctoral
positions in the department of Mechanical Engineering
at the University of Michigan and the Institute for

Robotics and Intelligent Machines at Georgia Tech, he joined the University of
Alabama in 2021 where he is now an Assistant Professor in the department
of Mechanical Engineering. His research interests include deterministic and
stochastic optimal control, nonlinear and hybrid systems, analytical mechanics
and chaos, with applications in automotive industry, sensors and actuators, and
robotics.

Peter E. Caines received the BA in mathematics from
Oxford University in 1967 and the Ph.D. in systems and
control theory in 1970 from Imperial College, Univer-
sity of London, supervised by David Q. Mayne, FRS.
Following PDF and visiting positions at Stanford, UC
Berkeley, Toronto and Harvard, he joined McGill Uni-
versity in 1980, where he is Distinguished James McGill
Professor and Macdonald Chair in the Department of
Electrical and Computer Engineering. He received the
IEEE Control Systems Society Bode Lecture Prize (2009),
is a Fellow of IFAC, CIFAR, SIAM, IEEE, the IMA (UK)

and the Royal Society of Canada (2003), and is a member of Professional
Engineers Ontario. His monograph, Linear Stochastic Systems (Wiley, 1988), is
now a SIAM Classic and his research interests include stochastic and hybrid
systems, and mean field (games and control) systems on complex networks.

http://refhub.elsevier.com/S0005-1098(22)00089-9/sb27
http://refhub.elsevier.com/S0005-1098(22)00089-9/sb27
http://refhub.elsevier.com/S0005-1098(22)00089-9/sb27
http://refhub.elsevier.com/S0005-1098(22)00089-9/sb27
http://refhub.elsevier.com/S0005-1098(22)00089-9/sb27
http://refhub.elsevier.com/S0005-1098(22)00089-9/sb27
http://refhub.elsevier.com/S0005-1098(22)00089-9/sb27
http://refhub.elsevier.com/S0005-1098(22)00089-9/sb28
http://refhub.elsevier.com/S0005-1098(22)00089-9/sb28
http://refhub.elsevier.com/S0005-1098(22)00089-9/sb28
http://refhub.elsevier.com/S0005-1098(22)00089-9/sb28
http://refhub.elsevier.com/S0005-1098(22)00089-9/sb28
http://refhub.elsevier.com/S0005-1098(22)00089-9/sb28
http://refhub.elsevier.com/S0005-1098(22)00089-9/sb28
http://refhub.elsevier.com/S0005-1098(22)00089-9/sb29
http://refhub.elsevier.com/S0005-1098(22)00089-9/sb29
http://refhub.elsevier.com/S0005-1098(22)00089-9/sb29
http://refhub.elsevier.com/S0005-1098(22)00089-9/sb29
http://refhub.elsevier.com/S0005-1098(22)00089-9/sb29
http://refhub.elsevier.com/S0005-1098(22)00089-9/sb30
http://refhub.elsevier.com/S0005-1098(22)00089-9/sb30
http://refhub.elsevier.com/S0005-1098(22)00089-9/sb30
http://refhub.elsevier.com/S0005-1098(22)00089-9/sb31
http://refhub.elsevier.com/S0005-1098(22)00089-9/sb31
http://refhub.elsevier.com/S0005-1098(22)00089-9/sb31
http://refhub.elsevier.com/S0005-1098(22)00089-9/sb31
http://refhub.elsevier.com/S0005-1098(22)00089-9/sb31
http://refhub.elsevier.com/S0005-1098(22)00089-9/sb32
http://refhub.elsevier.com/S0005-1098(22)00089-9/sb32
http://refhub.elsevier.com/S0005-1098(22)00089-9/sb32
http://refhub.elsevier.com/S0005-1098(22)00089-9/sb33
http://refhub.elsevier.com/S0005-1098(22)00089-9/sb33
http://refhub.elsevier.com/S0005-1098(22)00089-9/sb33
http://refhub.elsevier.com/S0005-1098(22)00089-9/sb34
http://refhub.elsevier.com/S0005-1098(22)00089-9/sb34
http://refhub.elsevier.com/S0005-1098(22)00089-9/sb34
http://refhub.elsevier.com/S0005-1098(22)00089-9/sb35
http://refhub.elsevier.com/S0005-1098(22)00089-9/sb35
http://refhub.elsevier.com/S0005-1098(22)00089-9/sb35
http://refhub.elsevier.com/S0005-1098(22)00089-9/sb35
http://refhub.elsevier.com/S0005-1098(22)00089-9/sb35
http://refhub.elsevier.com/S0005-1098(22)00089-9/sb36
http://refhub.elsevier.com/S0005-1098(22)00089-9/sb36
http://refhub.elsevier.com/S0005-1098(22)00089-9/sb36
http://refhub.elsevier.com/S0005-1098(22)00089-9/sb36
http://refhub.elsevier.com/S0005-1098(22)00089-9/sb36
http://refhub.elsevier.com/S0005-1098(22)00089-9/sb38
http://refhub.elsevier.com/S0005-1098(22)00089-9/sb38
http://refhub.elsevier.com/S0005-1098(22)00089-9/sb38
http://refhub.elsevier.com/S0005-1098(22)00089-9/sb38
http://refhub.elsevier.com/S0005-1098(22)00089-9/sb38
http://refhub.elsevier.com/S0005-1098(22)00089-9/sb39
http://refhub.elsevier.com/S0005-1098(22)00089-9/sb39
http://refhub.elsevier.com/S0005-1098(22)00089-9/sb39
http://refhub.elsevier.com/S0005-1098(22)00089-9/sb39
http://refhub.elsevier.com/S0005-1098(22)00089-9/sb39
http://refhub.elsevier.com/S0005-1098(22)00089-9/sb40
http://refhub.elsevier.com/S0005-1098(22)00089-9/sb40
http://refhub.elsevier.com/S0005-1098(22)00089-9/sb40
http://refhub.elsevier.com/S0005-1098(22)00089-9/sb40
http://refhub.elsevier.com/S0005-1098(22)00089-9/sb40
http://refhub.elsevier.com/S0005-1098(22)00089-9/sb41
http://refhub.elsevier.com/S0005-1098(22)00089-9/sb41
http://refhub.elsevier.com/S0005-1098(22)00089-9/sb41
http://refhub.elsevier.com/S0005-1098(22)00089-9/sb41
http://refhub.elsevier.com/S0005-1098(22)00089-9/sb41
http://refhub.elsevier.com/S0005-1098(22)00089-9/sb42
http://refhub.elsevier.com/S0005-1098(22)00089-9/sb42
http://refhub.elsevier.com/S0005-1098(22)00089-9/sb42
http://refhub.elsevier.com/S0005-1098(22)00089-9/sb42
http://refhub.elsevier.com/S0005-1098(22)00089-9/sb42
http://refhub.elsevier.com/S0005-1098(22)00089-9/sb43
http://refhub.elsevier.com/S0005-1098(22)00089-9/sb43
http://refhub.elsevier.com/S0005-1098(22)00089-9/sb43
http://refhub.elsevier.com/S0005-1098(22)00089-9/sb43
http://refhub.elsevier.com/S0005-1098(22)00089-9/sb43
http://arxiv.org/abs/2003.04938
http://arxiv.org/abs/2112.11963
http://refhub.elsevier.com/S0005-1098(22)00089-9/sb46
http://refhub.elsevier.com/S0005-1098(22)00089-9/sb46
http://refhub.elsevier.com/S0005-1098(22)00089-9/sb46
http://refhub.elsevier.com/S0005-1098(22)00089-9/sb46
http://refhub.elsevier.com/S0005-1098(22)00089-9/sb46
http://refhub.elsevier.com/S0005-1098(22)00089-9/sb47
http://refhub.elsevier.com/S0005-1098(22)00089-9/sb47
http://refhub.elsevier.com/S0005-1098(22)00089-9/sb47
http://refhub.elsevier.com/S0005-1098(22)00089-9/sb47
http://refhub.elsevier.com/S0005-1098(22)00089-9/sb47
http://refhub.elsevier.com/S0005-1098(22)00089-9/sb48
http://refhub.elsevier.com/S0005-1098(22)00089-9/sb48
http://refhub.elsevier.com/S0005-1098(22)00089-9/sb48

	A class of hybrid LQG mean field games with state-invariant switching and stopping strategies
	Introduction
	State-invariant optimal switching and stopping strategies for single-agent hybrid LQG systems
	Major–minor hybrid LQG mean field games
	Problem description
	Discrete state association
	Dynamics and costs: Finite population 
	Major agent
	Generic Ak-type minor agent


	Hybrid mean field game approach
	Hybrid evolution of mean field
	Major agent: Infinite populations
	Hybrid dynamics and cost
	Jump transition maps and switching costs
	Best response hybrid control action

	Minor agents: Infinite population
	Hybrid dynamics and costs
	Best response hybrid control actions

	Hybrid mean field consistency equations and -Nash equilibrium
	Hybrid dynamic programming methodology

	Simulations
	Conclusions
	Appendix A. Proof of Theorem 1
	Appendix B. Jump Transition Maps and Switching Costs for Minor Agents
	Appendix C. Proof of Theorem 3
	References


