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Abstract In this paper, a parametrically resonated MEMS gyroscope is considered, and the effect of its param-
eters on the system stability is studied. Unlike the general case of MEMS gyroscopes with harmonic excitation,
in this new class of gyroscopes with parametric excitation, the origin is one stationary point of the system. The
study starts with the stability analysis of the origin, and then it goes on to analyze the effect of each parameter
on the stability of periodic orbits. Stabilities are studied by means of Floquet theory. As the results indicate,
presence of a non-trivial response for the system is closely interconnected to the stabilities (and instabilities)
of the system. It is demonstrated that the stability of the origin always contributes to a zero response for the
sensor, and hence the instability of origin is required for the occurrence of parametric resonance. In contrast,
stability of a periodic orbit does not necessarily guarantee a resonant response for the gyroscope, and again it
is the instability of the origin which is required for this purpose. Because in the case of linear stiffness—lin-
ear parametric excitation the instability of the origin results in instability of the system, it is concluded that
nonlinearities are required for a parametrically actuated gyroscope.

1 Introduction

Gyroscopes can be classified into three categories: rotating, optic, and vibrating gyroscopes. The first two
kinds are too heavy and too large to be used broadly in many applications. However, the vibrating-type MEMS
gyroscopes are smaller, lighter, and cheaper. They need less power, have higher reliability, and can be multi-
functional. These devices are so small that they can be integrated with the electronic circuits required for their
operation.

Various types have been proposed and used for MEMS gyroscopes. For instance, tuning forks, ring-type,
cantilever-type, and lumped mass gyroscopes are some examples of these types. In all of the vibrating gyro-
scopes, there is an actuation force which causes part of the sensor to vibrate in one direction called the drive
mode. The vibrating part of the gyroscope also has some other degrees of freedom in one or more directions
called the sense mode(s), which is ideally decoupled from the drive mode in the absence of external rotation
rate. In the presence of an external rotation speed, the sense mode becomes coupled to the drive mode as a
result of the produced Coriolis force.

In order to obtain high amplitudes in the drive mode by consumption of minimal energy, the drive mode
should be resonated by the excitation voltage. Furthermore, to have a more accurate reading for the sensor
(i.e., high amplitudes in this mode), the signal in the drive mode should provide resonance in the sense mode.
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In almost all of the currently fabricated gyroscopes, the actuation mechanism is a simple harmonic voltage and
hence, to meet the aforementioned requirements, the resonant frequencies in both modes should be matched
[1]. However, the requirement of matched modes is hard to provide due to unavoidable imperfections in the
manufacturing process. As a result, most designs are not based on matched vibration mode frequencies [1]
and therefore do not provide high amplitudes in the output of the sensor.

To overcome the problem of mode mismatching, a number of methods have been proposed and put into
practice. These methods can be categorized into three distinct groups. Since the mismatching is due to the
manufacturing process (i.e., difference in stiffness of the two modes), the first group concentrates on the fab-
rication process in order to provide equal restoring forces in the two directions. For instance, Liu et al. [2]
presented a new design for the spring beams and optimized the shape of the suspension beams by a cellular
automata approach, and Alper et al. [3–5] proposed a structure for a suspension system that provides decoupled
and adjustable stiffness in the two modes. The adjustment is performed using an extra set of comb fingers
which electrostatically alter the natural frequencies. The method proposed by Jeong et al. [6] is also based on
electrostatic tuning of stiffness.

Since post-manufacturing techniques require manual tunings, they are not suitable for mass production
[7] and hence, the second group tries to implement closed loop control techniques to match the modes. For
instance, Sung et al. [7–9] provided resonance in both modes through phase-locked loop (PLL) control, and
Park et al. [10–13] used adaptive force control for this purpose.

While the first two categories increase the cost of the sensor because of extra manufacturing processes
or additional devices for control purposes, the third group utilizes parametric resonance which is not based
on mode matching. The idea of employing parametric resonance was first proposed by Oropeza-Ramos et al.
[14]. Since parametric excitation can be applied only by replacement of interdigitated comb fingers by non-
interdigitated ones [14–19], parametric resonance does not impose extra financial burden on the fabrication of
the gyroscope. In addition, parametric resonance is robust to parameter changes and hence, such a gyroscope
does not require post-manufacturing tunings.

The idea of implementing parametric excitation for MEMS gyroscopes (instead of the common method of
harmonic excitation) was studied through a frequency analysis by Miller et al. [20] for the purpose of predicting
the occurrence of parametric resonance. Based on this study and some experimental evaluations, a gyroscope
was arranged to work based on this phenomenon [15–17].

However, the study performed by the present authors [21] pointed out that the frequency approach, although
is suitable for providing parametric resonance in the drive mode, does not necessarily guarantee the occurrence
of resonance in the sense mode. A parametric study on the system indicates that there are some sets of parame-
ters for which the output of the sensor is amplified significantly higher than what has been previously reported
by Oropeza-Ramos et al. [14–19]. This parametric study is beyond the scope of this paper which studies the
stability of such a parametrically excited gyroscope with the parameters having the values presented in Table 2.
For more information, one can refer to [21] or follow the future publications of the authors.

When parametric excitation is used, the dynamic characteristics of the gyroscope change significantly.
For instance, the time-invariant governing equation of a harmonically excited gyroscope becomes time-vary-
ing when parametric excitation is used. Furthermore, zero response (trivial solution) is always one possible
response for a parametrically excited gyroscope even in the presence of nonzero excitation (hence instability of
the origin would be desirable), while a harmonically excited gyro would never have zero response in presence
of nonzero excitation. But the most important change provided by parametric excitation is that parametric
resonance occurs in a wide range of frequencies, while harmonic resonance only takes place at the vicinity
of one specific frequency (the natural frequency). This last property provides robustness to manufacturing
imperfections.

In the previous study [22], the stability of the origin for the system designed by Oropeza-Ramos et al.
[14–17] was studied, and it was shown that the origin was exponentially stable for the considered system. To
overcome the problems associated with the stability of the origin, it was suggested to add a harmonic term to
the parametric excitation to make the origin not be a stationary point of the system [22]. A parametric study on
the system [21] indicated that there are other sets of parameters that can provide much higher amplitudes for the
sensor. In this paper, the previous study [22] is extended to analyze the stability of both the origin and periodic
orbits of a parametrically excited MEMS gyroscope, and it is shown that the stability-related problems for the
gyroscope designed by Oropeza-Ramos et al. [14–17] do not exist for the system with new suggested values
of parameters. In addition, the stability of the origin is studied for different values of the system parameters,
and it is shown that instability of the origin is related to the occurrence of parametric resonance. After that,
the effect of each parameter on the stability of the periodic orbit is analyzed.
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2 Statement of the model

In this paper, a gyroscope with a single lumped mass is considered. The simplified equivalent structure of the
device is shown in Fig. 1.

Considering pure rotation of the gyroscope’s frame about the z-axis, the equation of motion for the system
shown in Fig. 1 is presented in Eq. (1), where m is the mass, Fd is damping force, Fr represents the elastic
restoring forces provided by the springs, and Fa (x ,t) corresponds to the parametric actuation force. Note that
the terms 2m�z ẏ and −2m�z ẋ represent the rotation-induced Coriolis forces, and the terms mx�2

z and my�2
z

are related to the centripetal acceleration required for rotation of the mass about the z-axis,

mẍ + Fd
x + Fr

x = Fa (x, t) + 2m�z ẏ + mx�2
z ,

mÿ + Fd
y + Fr

y = −2m�z ẋ + my�2
z .

(1)

The damping and restoring forces are considered to behave as in Eq. (2):

Fd
x = cẋ, Fd

y = cẏ,

Fr
x = k1x + k3x3, Fr

y = k1 y + k3 y3.
(2)

In order to generate a parametric excitation, the actuation force is produced by a set of non-interdigitated
comb fingers with the equation described by:

Fa (x, t) = − (
r1x + r3x3) V (t)2 . (3)

In Eq. (3), r1 and r3 are electrostatic coefficients that depend on the physical dimensions and spacing of
the electrostatic comb drives, and V (t) is the voltage applied across the drives [14–16]. Since the electrostatic
force has a square dependence on the applied voltage, it is proposed to use a square-rooted sinusoidal signal
as in Eq. (4) in order to isolate the parametric effects from the harmonic response [14–16],

V (t) = VA (1 + cos (ωt))1/2 . (4)

Substituting Fa and Fr in Eq. (1) and re-scaling the parameters, the gyroscopic system is described by

x ′′ + αx ′ + (δx1 + 2β1 cos 2τ) x + (δx3 + 2β3 cos 2τ) x3 − γ y′ = 0,

y′′ + αy′ + δy1 y + δy3 y3 + γ x ′ = 0.
(5)

The derivative operator and the scaled parameters used in Eq. (5) are defined in Table 1.
Note that the two parameters δx1 and δx3 are not independent from other parameters because by the defini-

tion of the parameters in Table 1, the equalities δx1 = δy1 +2β1 and δx3 = δy3 +2β3 must be held. The method
for finding the parameter values that correspond to high-amplitude parametric resonance in the gyroscope is

y

x

Ω z

Free State
Deformed State

Drive MechanismSense Mechanism

Fig. 1 Structure of the MEMS gyroscope considered in this paper
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Table 1 The derivative operator and the scaled parameters

α = 2c
mω

γ = 4�z
ω

β1 = 2r1V 2
A

mω2 β3 = 2r3V 2
A

mω2

δx1 = 4k1
mω2 + 2β1 − γ 2

4 δy1 = 4k1
mω2 − γ 2

4

δx3 = 4k3
mω2 + 2β3 δy3 = 4k3

mω2

2τ = ωt (.)′ = d(.)
dτ

Table 2 Three sets of parameters values for obtaining resonant high amplitudes for the gyroscope

Set 1 Set 2 Set 3

δy1 1 1 4
β1 4.2 13.5 6.5
β3 0 0 0
α 0.01 0.01 0.01
γ 0.001 0.001 0.001

beyond the scope of this paper. We just consider the values found from a parametric study on design of the
gyroscope [21] and study the effect of variations of each parameter around the resonating values presented in
Table 2. It should also be mentioned that the parameter δy3 has only a scaling effect on the output of the sensor,
and hence the assumption δy3 = 1 can be made without loss of generality.

Ruling out the nonlinear terms in Eq. (5) by setting δy3 and β3 (corresponding to k3 and r3) equal to zero,
the equation of motion for the linear system corresponding to the nonlinear system in Eq. (5) is presented by
Eq. (6),

x ′′ + αx ′ + (δx1 + 2β1 cos 2τ) x − γ y′ = 0,
y′′ + αy′ + δy1 y + γ x ′ = 0.

(6)

Notice that unlike harmonic excitation for which there is no equilibrium point in the presence of a nonzero
actuation and hence the system has always a periodic response, for parametric excitation as given by Eqs.
(5) and (6), the origin (or zero state) is always one stationary point of the system. As a result, there may or
may not exist a nonzero periodic response for a parametrically excited system. In this paper, by studying the
stability of both the origin and the periodic response, the relationship between these stabilities and occurrence
of parametric resonance is explained. To this end, it is first shown that the linear system in Eq. (6) has no
asymptotically stable periodic orbit other than zero. After that, the stability of the nonlinear system in Eq. (5)
is studied in two parts. First, the stability of the origin for Eq. (5) is discussed based on the stability of Eq. (6);
then, the relationship between the instability of the origin and occurrence of parametric resonance is presented.
After that, stability of the periodic orbits of Eq. (6) will be examined, and the effect of each parameter on this
stability will be discussed.

In this paper, Floquet theory is employed for the purpose of stability analysis. In the following Section, the
reasons that Floquet theory was selected for this purpose are discussed.

3 Stability criterion

Although the most common stability criterion in the analysis of nonlinear systems is the Lyapunov theorem,
for the following reasons it is not appropriate for the present purpose which is the analysis of the stability of
both the origin and the periodic orbits of the considered gyroscope:

(i) Lyapunov criterion is designated for verification of stability of the equilibrium point (the origin, in this
problem). When the stability of periodic orbits is desired, it is required to have the analytical equation
of the orbit to subtract from the main equation, which is not available in many cases (including the
considered gyroscope), and even when available, the resulting equation is typically more complicated
than the system itself.
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(ii) Lyapunov criterion is a sufficient condition for stability and is not a necessary condition. In addition,
Lyapunov-based instability criteria are also sufficient conditions, and as a consequence, there might be
regions for which neither stability nor instability can be proved.

(iii) Lyapunov does not provide a quantitative measure for stability, and it cannot be used to study the effect of
changing parameters on the stability behavior. In addition, when parameters of the system are changed,
sometimes the Lyapunov function is required to be changed so that stability can be proved.

(iv) Lyapunov criterion is rather more complex for non-autonomous systems (including the considered
gyroscope).
In contrast, since the governing equations of the considered gyroscope are periodic, based on the fol-

lowing reasons, Floquet theory would be a suitable tool for stability analysis of the considered system:

(i) Floquet theory is explicitly developed for the analysis of periodic orbits of a periodic system. In this
paper, it will be shown how this tool can be extended to examine the stability of the origin for the
considered gyroscope.

(ii) Stability and instability are examined simultaneously when using Floquet theory. As a result, boundaries
between stability and instability can be determined precisely.

(iii) It provides a quantitative measure of stability, and hence it can easily be applied to study the effect of
changing a particular parameter on the stability characteristics of the system.

(iv) Since it is a numerical tool, it is as simple for non-autonomous systems as it is for autonomous ones.

In the next section, Floquet theory is introduced briefly.

4 Floquet theory

Consider the general set of inhomogeneous, non-autonomous differential equations (7):

ẋ = F (x, t) = F (x, t + T ) where F (0, t) �= 0. (7)

Assume that this set of differential equations has a periodic solution xr (t) = xr (t + T ). For a sufficiently
small perturbation x̃ (t) (such that x (t) = xr (t)+ x̃ (t)), the linearized dynamics of the perturbation term will
be of the form of Eq. (8)

˙̃x (t) = D (t) x̃ (t) (8)

where

D (t) = ∂ F (x, t)

∂x

∣
∣∣
∣
x̃(t)=0

= ∂ F (x, t)

∂x

∣
∣∣
∣
x(t)=xr (t)

. (9)

The periodic solution of Eq. (7) is stable (i.e., the influence of perturbation x̃ (t) will fade away) if and only
if the magnitudes of all the eigenvalues of the so-called monodromy matrix are less than unity. Monodromy
matrix is defined as the solution of the set of differential equations (10) for the state transition matrix 
(t)
with the initial condition of 
(0) = I evaluated at the time T as in Eq. (11).


̇ (t) = D (t)
 (t) , (10)

M = 
 (T ) . (11)

Each eigenvalue of the monodromy matrix M is referred to as a Floquet Multiplier (or Floquet Exponent)
of the system and is a measure of the fading rate of the perturbation in the direction of the corresponding
eigenvector. When the magnitudes of all Floquet multipliers are less than unity, the perturbation has faded
away in each direction after one period T . Because of the periodic nature of Eq. (7) which means that the same
transformation matrix M operates at every revolution (period), it can be concluded that the perturbation x̃ (t)
will finally approach the zero state.

If only one of the Floquet multipliers has a magnitude larger than unity, the perturbation will grow expo-
nentially in that direction and consequently xr (t), the periodic solution of the system, is unstable. For the case
when the magnitude of one of the Floquet exponents is unity (while others have a magnitude less than 1)
Floquet theory cannot conclude stability or instability because of the linearization. In this case, stability should
be determined through extra techniques.

Now we go back to our system in Eqs. (5) and (6). First, in the following Section, stability of the linear
system (6) is studied and after that, stability of the nonlinear system (5) is examined based on the stability
results of the linear system.
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5 Stability of the linear system

In this Section, it is shown that when the values of the nonlinear terms in Eq. (5) are small so that they can
be neglected, the corresponding linear system in Eq. (6) can never possess any asymptotically stable periodic
solution other than zero. When stability conditions predict an asymptotic stable periodic response for the linear
system in Eq. (6) (i.e., when the Floquet multipliers are less than unity), this response would be the trivial
solution. The important outcome of this Section is that it shows how exponential stability of the origin can be
concluded from Floquet exponents of the linear system. This is shown in Proposition 1.

Proposition 1 The system in Eq. (6) has no asymptotically stable periodic response other than trivial solu-
tion. Furthermore, if the asymptotic stability is obtained from the magnitude of the Floquet exponents1 lying
below 1, the origin is globally exponentially stable.

Proof of Proposition 1 By defining the state variables as x1 = x , x2 = x ′ , x3 = y , x4 = y′, the system in
Eq. (6) can be rewritten in the form of Eq. (12)

⎡

⎢
⎢⎢
⎣

x ′
1

x ′
2

x ′
3

x ′
4

⎤

⎥
⎥⎥
⎦

=

⎡

⎢
⎢⎢
⎣

0 1 0 0

− (δx + 2βx cos 2τ) −αx 0 γ

0 0 0 1

0 −γ −δy −αy

⎤

⎥
⎥⎥
⎦

⎡

⎢
⎢⎢
⎣

x1

x2

x3

x4

⎤

⎥
⎥⎥
⎦

or x ′ = A(τ )x . (12)

Because the system is linear, the dynamics of the perturbation term will be in the form of Eq. (12), that is,
the same as the dynamics of the system itself,

x̃ ′ = D(τ )x̃ = ∂ F

∂x

∣
∣∣∣
x=xr

x̃ = A(τ )x̃ . (13)

Now assume that there is an asymptotically stable periodic solution for Eq. (6). The asymptotic stability
of this periodic orbit requires asymptotic stability of the origin for the perturbation term (Eq. (13)) which is
equivalent to asymptotic stability of the origin for Eq. (12). But for a linear system, the stability is global
meaning that for every initial condition the response would asymptotically reach the zero state. Hence, the
linear system has no asymptotically stable periodic response other than the trivial solution.

To prove the exponential stability of the origin which is required later in the Sect. 6.1, we should note that

asymptotic stability through Floquet multipliers requires that ∀i : |λi | < 1. Denoting max
{∣∣λi (MT M)

∣∣1/2
}

by ρ, we can write

‖x(t + T )‖ = ‖
(T ) x(t)‖ ≤ ρ ‖x(t)‖ . (14)

Because of the periodic nature of the governing equations, it can be shown that (see [23]):


(kT ) = 
k (T ) (15)

and also

λ (
 (kT )) = λ
(

k (T )

)
= λk (
 (T )) . (16)

So, we may write:

‖x(t + nT )‖ ≤ ρn ‖x(t)‖ = en ln ρ ‖x(t)‖ . (17)

By defining μ

= − ln ρ and remembering that 0 < ρ < 1 ⇒ μ > 0, we can write:

‖x(t + nT )‖ ≤ e−nμ ‖x(t)‖ . (18)

This equation illustrates the exponential stability of the origin. Due to the linear nature of Eqs. (6) and (12),
this holds for any initial condition in R

2 and hence, stability and instability properties of the origin are global.

1 Defined as the singular values of the monodromy matrix.
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Establishing conclusions of the origin stability based on Floquet exponents can be explained as follows:
Since in the stability analysis of periodic orbits for the linear system (12) the equation of the orbit itself does
not appear, the stability of all possible orbits would be computed the same. Because the trivial solution is a
periodic response with any assumed period including the period of excitation, when Floquet exponents are
computed, the stability of the origin is determined. As a conclusion, if there would be any asymptotically
stable periodic orbit, the origin is globally exponentially stable for Eq. (12) and hence, all responses will move
toward the origin starting from any possible initial condition. As a result, the only possible asymptotically
stable periodic response for the system (12) is the trivial solution. Note that without Proposition 1, the period
T required for the computation of Floquet exponents for stability of the origin cannot be provided.

6 Stability analysis of the nonlinear system

The state space equation of the nonlinear system (5) is presented in Eq. (19):

x ′ = F (x, τ ) =

⎧
⎪⎨

⎪⎩

x2
−αx x2 − (δx + 2βx cos 2τ) x1 − (δx3 + 2βx3 cos 2τ) x3

1 + γ x4
x4
−αy x4 − δy x3 − δy3x3

3 − γ x2

⎫
⎪⎬

⎪⎭
. (19)

In this Section, stabilities related to this nonlinear system including the stability of the origin and the
stability of the periodic orbits are studied. The importance of the stability of the origin is that when it is stable,
for the initial states within the region of attraction of the origin, the steady output of the gyroscope is zero
which is not acceptable for the sensor. In contrast, when the origin becomes unstable, responses of the system
escape from the rest condition and reach the existing stable periodic orbits.

In the following, Sect. 6.1 concerns the stability of the origin for the nonlinear system (19), and Sect. 6.2
discusses the stability of periodic orbits of Eq. (19).

6.1 Stability of the origin for the nonlinear system

In this Section, stability of the origin for the nonlinear system (19) is verified based on the stability of the linear
system (12), and it is shown that the origin is either unstable or exponentially stable2 for Eq. (19). To this end,
we first introduce a theorem that relates the stability of the origin for a nonlinear system to the stability of the
origin for its corresponding linear system, and then in Proposition 2, we show that the origin stability for Eq.
(19) can be verified based on the Floquet exponents of Eq. (12).

Theorem3

Let x = 0 be an equilibrium point for the nonlinear system

ẋ = F (x, t) (20)

where F : [0,∞) × D → R
n is continuously differentiable, D = {x ∈ R

n such that ‖x‖2 < r}, and the
Jacobian matrix [∂ F/∂x] is bounded and Lipschitz on D uniformly in t. Also let

A (t) = ∂ F (x, t)

∂x

∣∣
∣∣
x=0

. (21)

Then, the origin is an exponentially stable equilibrium point for the nonlinear system (19) if it is an
exponentially stable equilibrium point for the linear system in (22):

ẋ = A (t) x . (22)

The region of attraction for Eq. (20) contains �ρ where �ρ = {‖x‖2 ≤ ρ} for some 0 < ρ ≤ r .

2 Since the case of maximum Floquet exponent equal to 1 happens only in stability boundaries, this case is not concerned
separately, and it is regarded as a transition from stability to instability.

3 To find this theorem and its proof, see [24].



1176 A. Pakniyat et al.

Fig. 2 Stability of the origin for the considered gyroscope based on max Floquet exponent of the linear system for different values
of δy1 and β1

Proposition 2 Stability of the origin for the parametrically excited gyroscope in Eq. (19) can be verified from
the Floquet exponents of the corresponding linear system (12). In the case of asymptotic stability of the origin,
the zero state is exponentially stable with non-empty basin of attraction containing the origin.

Proof of Proposition 2 Since the zero response satisfies Eq. (19), the origin is an equilibrium point for the
equation x ′ = F (x, τ ). Also, it can be easily shown that F is continuously differentiable. The Jacobian matrix
is computed as:

∂ F

∂x
=

⎡

⎢⎢
⎢
⎣

0 1 0 0(− (δx + 2βx cos 2τ)

−3 (δx3 + 2βx3 cos 2τ) x2
1

)
−αx 0 γ

0 0 0 1
0 −γ −δy − 3δy3x2

3 −αy

⎤

⎥⎥
⎥
⎦

. (23)

The Jacobian matrix in Eq. (23) and its derivative with respect to x (which is a 3-dimensional matrix with
4 × 4 × 4 dimension) are bounded in any bounded region [0, ∞)×D where D = {x ∈R

n such that ‖x‖2 <r}.
So [∂ F/∂x] is Lipschitz on D. Because cos 2τ is bounded, this Lipschitz property is uniform in τ . Moreover,
the linear system corresponding to Eq. (19) is derived in Eq. (24) which contributes to the same equation as
the equation of the linear system (12) for which the exponential stability of the origin was determined,

A (τ ) = ∂ F (x, τ )

∂x

∣
∣∣
∣
x=0

=
⎡

⎢
⎣

0 1 0 0
− (δx + 2βx cos 2τ) −αx 0 γ
0 0 0 1
0 −γ −δy −αy

⎤

⎥
⎦ . (24)

Since all the requirements in the mentioned Theorem are satisfied, the condition of Floquet exponents of
Eq. (19) being less than unity verifies local exponential stability of the origin with some region of attraction
� containing �ρ .

Now that the tool for analyzing the stability of the origin has been developed, stability or instability of the
origin for different parameters values is studied. According to Proposition 2, nonlinear terms have no effect on
the stability of the origin for the nonlinear system since this stability is determined exclusively from the linear
system. It should be noted that when one Floquet exponent has a magnitude equal to 1, and hence stability of
the origin cannot be concluded from Proposition 2, nonlinear terms may contribute to either the origin stability
or its instability. However, according to the results (see Fig. 2 through 7), for the considered gyroscope, the
case of maximum Floquet exponent equal to unity occurs only on a boundary line and not a surface region and
so, this case coincides with marginal stability. In conclusion, the only terms that can influence the stability of
the origin are δx1, δy1, β1, α, and γ . However, since the equality δx1 = δy1 + 2β1 holds (see Table 1), there
are only four independent parameters δy1, β1, α and γ that influence stability of the origin.

Since the most important factors for occurrence of resonance in the system are δy1 and β1, the nominal
values for α and γ are considered to be 0.01 and 0.001, respectively, as in Table 2, and the maximum magnitude
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Fig. 3 Maximum steady state amplitude in a drive mode and b sense mode for different values of δy1 and β1

of Floquet exponents for different values of δy1 and β1 is studied in Fig. 2. In this Figure, for some values of
δy1 and β1, the maximum magnitude of Floquet exponents is less than 1 (the plate in the floor of the figure with
max Floquet exponent around 0.98), which based on Proposition 2 shows exponential stability of the origin.
For other sets of values, the maximum Floquet exponent lies above the z = 1 plane4, which shows instability
of the origin.

Comparing the stability of the origin (Fig. 2) with the maximum amplitudes in the two modes (Fig. 3 [22]),
it is demonstrated how the instability of the origin contributes to parametric resonance in the system. In all
regions for which the origin is stable (i.e., the maximum magnitude for the Floquet exponents lies below the
z = 1 plane), the maximum amplitude in both modes is zero (see Fig. 3). In contrast, whenever the maximum
magnitude of the Floquet exponents is above 1, parametric resonance occurs in drive mode (Fig. 3a) and
furthermore, the amplitude in the sense mode (Fig. 3b) becomes nonzero. However, resonant amplitudes in
the sense mode require more conditions than instability of the origin. For resonance to occur in the sense
mode, the produced signal in the drive mode should contain enough frequency content of the sense mode
natural frequency. In the studied region, this occurs only for δy1 = 1 and δy1 = 4 for some resonance regions
corresponding to β1 (see Fig. 3b and also Table 2).

By considering δy1 = 1, for different values of β1 and α, the stability characteristic of the origin is presented
in Fig. 4. For δy1 = 4, the behavior is the same and hence is not illustrated here.

As was expected from the relationship of the maximum Floquet exponent with the term β1 (at the cross
section δy1 = 1 of Fig. 2), the same regions of β1 for which a change in the maximum Floquet exponent
occurs do not vary for different values of α. However, in both resonating and non-resonating values of β1,
the maximum Floquet exponent decreases by increasing α, which demonstrates that the stability of the origin
is increased. This means that for larger values of α, parametric resonance occurs with increased difficulty.
To illustrate this point, instability regions of Fig. 4 are presented in Fig. 5.

4 Here, z is the vertical axis corresponding to maximum Floquet exponent.
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Fig. 4 Stability of the origin for the considered gyroscope based on max Floquet exponent of the linear system for different values
of β1 and α

Fig. 5 Regions of instability of the origin for different values of β1 and α

The colored regions in Fig. 4 are the regions for which the magnitude of at least one Floquet exponent is
larger than unity, and consequently the response of the gyroscope escapes from the rest condition and moves
toward probably periodic orbits. A full study on the existence and stability of periodic orbits in this case is
beyond the scope of this paper. It is just mentioned that although for different values of β3 bifurcations in the
system change the stability and the number of periodic orbits, for β3 = 0 and the values near zero, there are
always stable resonant periodic orbits with regions of attraction containing the origin. Therefore, when the
origin becomes unstable, the response of the gyroscope moves toward a stable periodic orbit.

Comparison of Fig. 4 (and Fig. 5) at the cross section β1 = 4.2 with Fig. 6 shows again the relationship
between instability of the origin and resonance in both modes. Note that for δy1 = 1 and β1 = 4.2, both
modes are in resonant conditions. It is interesting to note that Fig. 6 shows that the strength of instability of
the origin does not have a significant influence on the resonant amplitudes in the drive mode, but the vibration
amplitude of the sense mode is affected significantly by damping. However, it would be incorrect to assume
that this decrease in amplitude in the sense mode is due to the decrease in maximum Floquet exponent since
an examination on the corresponding direction of the maximum eigenvalue demonstrates that the eigenvalues
corresponding to the eigenvectors in the direction of the sense mode are less than 1. In fact, in the resonating
regions, it is the drive mode whose corresponding Floquet exponents become more than 1, resulting in the
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Fig. 6 Steady state amplitude in drive mode (top) and sense mode (bottom) for different values of α

Fig. 7 Stability of origin for the considered gyroscope based on max Floquet exponent of the linear system for different values
of β1 and γ

instability of the origin. The main reason for the noted decline in the sense mode amplitude is the reduction of
another Floquet exponent with a magnitude less than 1.

Comparison of Figs. 5 and 6 also shows how stability of the origin results in a decrease in resonant ampli-
tudes for the gyroscope. Around α = 0.178, the maximum magnitude of the Floquet exponents falls below
1 and the origin becomes exponentially stable with a non-empty region of attraction (see Proposition 2). As
a result, the system response is absorbed by the origin, which is explaining why amplitudes in both modes
become zero in the right side of Fig. 6.

According to performance issues, γ should be kept below 0.01 in order to prevent a significant change in
δy1 (see Table 1). In Fig. 7, the effect of γ in the region γ < 0.01 is studied. This figure shows that in both
resonant and non-resonant regions (based on the value of β1), γ has no effect on the stability of the origin for
a parametrically resonated MEMS gyroscope. Note that large γ makes the operation of the sensor unstable,
but these values are out of the operational range of the gyroscope and hence are not considered here.

In addition to the information provided by the maximum magnitude of the Floquet exponents, further
properties of the system can be obtained from the product of all Floquet exponents. Note that since the
Monodromy matrix is a real square matrix, Floquet exponents are either real or in complex conjugate pairs
and as a consequence, the product of Floquet exponents is a real value. This value is a measure of expansion
or contraction of the response of the perturbation term, which, based on Proposition 2, will show the behavior
of the response of the system near the origin.
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Fig. 8 Product of Floquet exponents for different values of δy1 and β1

Fig. 9 Product of Floquet exponents for different values of β1 and α

Fig. 10 Product of Floquet exponents for different values of β1 and γ

The interesting point that the product of Floquet exponents reveals is that except the scaled damping α,
other terms do not influence the contraction behavior of the response near the origin (see Figs. 8, 9 and 10).
According to these Figures, even when the origin is unstable and the system response expands in the direction of
the eigenvector corresponding to maximum Floquet exponent, the total behavior is in the form of contraction.
It means that the trajectories of the system are attracted by another attracting set that is the stabilized periodic
orbit in this case. By way of illustration, consider the first set of parameter values in Table 2. For this system,
the eigenvalues and corresponding eigenvectors are presented in Table 3. As can be observed, in the drive
mode (corresponding to the first two columns in the left side of Table 3), there is an expanding term in one
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Table 3 Floquet exponents and corresponding eigenvectors of the linear system for the mentioned gyroscope

Eigenvalue −1.309 −0.740 −0.984 −0.984

Corresponding Eigenvector

⎧
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⎪⎩

−0.7065
0.7078
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Fig. 11 Effect of α on the stability of periodic orbits

direction (by a factor of 1.309) and a contraction term in another direction (by 0.74). In the sense mode, the
response in both directions is contracting, and the system expansion (contraction) factor in this case is 0.938.

6.2 Stability of periodic orbits of the nonlinear system

As previously discussed, stability of the periodic orbits of the considered gyroscope in Eq. (19) is evaluated by
Floquet multipliers. According to the Floquet theory, the matrix D(τ ) that governs the dynamics of perturbation
is derived in Eq. (25):

D(τ ) = ∂ F

∂x

∣∣
∣∣
x=xr (τ )

=

⎡

⎢⎢
⎢
⎣

0 1 0 0
− (δx + 2βx cos 2τ) −
3 (δx3 + 2βx3 cos 2τ) x2

1
−αx 0 γ

0 0 0 1
0 −γ −δy − 3δy3x2

3 −αy

⎤

⎥⎥
⎥
⎦

∣
∣∣
∣∣
∣∣
∣∣
x=xr (τ )

. (25)

As can be seen in Eq. (25), in order to compute Floquet exponents for periodic orbits, the time trend of the
periodic orbit is required. The advantage of Floquet theory is that a numerical solution for the periodic orbit
is adequate. A thorough study on methods of finding periodic orbits for the considered system is beyond the
scope of this research and will be reported in another paper studying the bifurcations in the system. However,
it should be mentioned that for small values of β3, two stable periodic orbits with period 2π are dominant,
which are identical to each other except for a π radian phase difference. As a consequence, one can rely on
the steady state response of the gyroscope as its periodic orbit and study the effect of each parameter value on
the stability of this orbit. There is only one thing that should be considered while using steady state response
as the periodic orbit of the system: Since the trivial solution is the steady state response of the system when
the origin is stable, while using the steady response as the periodic orbit, the corresponding Floquet exponents
should be interpreted correctly as an indication of stability of the origin and not the periodic orbit.

Based on the discussed method, the effect of scaled damping α is studied in Fig. 11.
As expected, Fig. 11 shows that increasing α increases the stability of the periodic orbit by decreasing

the maximum Floquet exponent. An interesting point about Fig. 11 is that when the origin becomes stable
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Fig. 13 Effect of δy1 on the stability of the periodic origin

(the right-hand side of the figure), although the periodic orbits have stronger stability characteristics compared
to the origin, these orbits are not the dominant attractors of the response of the gyroscope, and the solutions
converge to the zero state.

The effect of δy1 on the stability of the periodic orbit is illustrated in Fig. 12. Comparing Fig. 12 with the
stability of the origin (Fig. 13) shows that although stability of the origin changes while δy1 is changed, the
stability of the periodic orbit is independent of changes in δy1. Another interesting point in Fig. 12 is that the
dominant zero response is not due to instability of periodic orbits, but it is due to the stability of the origin.
This conclusion was made because no change in the stability of periodic orbit occurs when zero response is
obtained.

The effect of β1 on the stability of the periodic orbit is shown in Fig. 14, and its effect the stability of the
origin is presented in Fig. 15. Again, it can be concluded that β1 has no effect on the stability of the periodic
orbit, and also it can be concluded that the zero response is obtained whenever the origin becomes stable while
the periodic orbits are still stable.

The remaining linear term γ (the scaled rotation rate) has no effect on the stability of periodic orbits in the
operational range considered for it and hence, it is not shown here.



Stability analysis of a new class of MEMS gyroscopes 1183

0 2 4 6 8 10 12 14 16
0.95

0.96

0.97

0.98

0.99

1

β
1

m
ax

 F
lo

qu
et

 E
xp

on
en

t

Fig. 14 Effect of β1 on the stability of periodic orbits
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Fig. 15 Effect of β1 on the stability of the periodic origin

Among the nonlinear terms δx3, δy3 and β3 (which are only two independent parameters since δx3 =
δy3 + 2β3 holds), δy3 has only a scaling effect on the response and consequently does not affect the stability.
By contrast, β3 is the key parameter in bifurcations happening in the system. A thorough study on bifurcations
related to β3 will be discussed in another paper by the authors. Mentioned here, however, is that in order to
have stable resonant-based high-amplitude periodic orbits for the gyroscope, β3 should be kept as small in
magnitude as possible in the interval (−0.5, 0). While for other values of β3 there are still resonant periodic
orbits, due to the problems associated with the presence of other non-resonant periodic orbits, the operation
of the gyroscope faces some fundamental difficulties and hence, these values should be avoided for β3 [21].

7 Conclusion

In this paper, stabilities related to a parametrically resonated MEMS gyroscope are studied. These stabilities
include those of the origin and of periodic orbits. The importance of studying the stability of the origin is that
unlike harmonic excitation for which there is no stationary point, for parametric excitation the origin is always
an equilibrium point. Hence, when the origin is asymptotically stable, the system response tends to a zero state
rather than a periodic orbit.
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For stability analysis, Floquet theory is implemented because it provides a simple numerical tool that quan-
titatively shows stability characteristics. Since Floquet theory is exclusively developed for studying periodic
orbits and not for a stationary point, two propositions were developed to make Floquet theory applicable for
the purpose of studying the stability of the origin.

As the study shows, the same parameters that influence the stability of the origin contribute to paramet-
ric resonance in the drive mode. Among these parameters, the value of the scaled stiffness δy1 is the most
important factor not for its relationship to stability issues but for its role in resonance in the sense mode. The
linear parametric excitation factor β1 has the key role in the instability of the origin and consequently in the
occurrence of parametric resonance in the drive mode. The effect of the scaled damping coefficient α is that it
increases stability of both the origin and the periodic orbit. However, large values of α make the origin stable
and drop parametric resonance in the system. Since for operational purposes, the scaled rotation rate γ should
be kept small, it cannot influence stabilities in the system.

The stability of periodic orbits is only influenced by the scaled damping α. Neither the linear terms (i.e.,
the scaled linear stiffness δy1, the parametric excitation factor β1, the scaled product of the excitation voltage
and the linear shape factor of the comb fingers, and the scaled rotation rate γ ) nor the nonlinear terms (i.e., the
scaled nonlinear stiffness δy3 and the nonlinear parametric excitation factor β3) can influence the stability of
the periodic orbits. In fact, it can be shown that bifurcations due to β3 occur while stabilities of periodic orbits
are unchanged [21], and as a result, bifurcations are in the form of emergence of new orbits in the presence
of previous orbits. Note that the relative values of β1 and β3 are determined by the relative position of the
actuating comb fingers, but their values can be adjusted via the excitation voltage (see Table 1). The interesting
point is that dominancy of zero response in non-resonant regions of the system results from the stability of the
origin. It should be noted that in these cases periodic orbits are still stable but the response moves toward the
origin because of its exponential stability.

The impact of this study is its importance in the design procedure of a parametrically excited MEMS gyro-
scope. Knowing the effect of each parameter on the stabilities of the system, one can search for the optimum
values for the parameters that result in the highest output amplitudes with consumption of minimal energy.
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