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Hybrid Optimal Control
of a Flying+Sailing Drone1

This paper studies the combined maneuver of flying and sailing for a robotic system which is
referred to as a flying+sailing drone. Due to the emergence of hybrid systems behavior in
tasks which involve both the flying and sailing modes, a hybrid systems formulation of the
robotic system is presented. Key characteristics of the system are (i) changes in the dimen-
sion of the state space as the system switches from flying to sailing and vice versa and (ii) the
presence of autonomous switchings triggered only upon the landing of the drone on the
water surface. For the scenario in which the drone’s initial state is given in the flying
mode and a fixed terminal state is specified in the sailing mode, the associated optimal
control problems are studied within the vertical plane passing through the given points,
hence the dynamics of the drone in the flying mode are represented in a five-dimensional
state space (associated with three degrees-of-freedom) and in a three-dimensional state
space in the sailing mode (associated with two degrees-of-freedom). In particular, the
optimal control problems for the minimization of time and the minimization of the
control effort are formulated, the associated necessary optimality conditions are obtained
from the hybrid minimum principle (HMP), and the associated numerical simulations are
presented. [DOI: 10.1115/1.4063603]
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1 Introduction
Over the past few decades, the need for multi-modal autonomous

robotics systems has emerged in several civil, commercial, and mil-
itary applications. As remarked by Ref. [1], for quick and efficient
military organizations, there is a grave need for a combined robotic
system capable of providing services of energy-efficient but slow-
moving ships combined with fast but energy-consuming planes.
The emergence of these multi-modal control systems calls for the
development of fast and efficient control synthesis algorithms
capable of handling the “hybrid” nature of these systems. Moreover,
fulfilling requirements such as the minimization of time and the
minimization of energy consumption in performing the tasks is a
significant aspect of the control synthesis in several applications,
e.g., in the search and rescue of humans in coastal cities, where
quick human detection is vital [2–4].
There is now an extensive literature on robotic systems capable

only of either flying or sailing. A review of the developments on
autonomous sailboats and their application is presented in
Ref. [5]. The stochastic dynamic programming approach for time-
optimal control of sailing drones is presented in Ref. [6]. The algo-
rithm for path planning of minimum time problem is introduced in
Ref. [7]. The path planning optimization problem of unmanned sail-
boats is investigated in Ref. [8]. The optimal control of flying
drones has also been extensively studied in the literature, e.g., in

Ref. [9], an algorithm for the minimum time of a quadrotor based
on Pontryagin’s minimum principle is presented; Ref. [10] studies
the time-optimal control problem subject to changes in the environ-
ment and encounters with unknown disturbances; and Refs. [11–14]
study the time-optimal control problems for drones in various
situations.
This paper focuses on the presentation of a hybrid systems for-

mulation for a drone capable of both flying and sailing and provides
solutions to the associated hybrid optimal control problems for the
minimization of time and the minimization of the control effort of
tasks involving both the flying and sailing modes. The theoretical
foundation of this work relies on the hybrid minimum principle
(HMP) which has been extensively researched in the control
theory literature [15–20]. The HMP has been implemented on
several engineering systems and, in particular, on various automo-
tive systems, see, e.g., Refs. [21–24].
Key aspects of hybrid systems exhibited by the flying+sailing

drone are (i) the presence of both autonomous and control switch-
ings, (ii) the presence of state jumps at switching instances, and
(iii) changes in the dimension of the state space upon switching
between different modes. Hence, we invoke the version of the
HMP with explicit expressions of the boundary conditions for the
Hamiltonians and adjoint processes as well as the associated
HMP-based multiple autonomous switching (HMP–MAS) algo-
rithm established in Ref. [20] in order to present a hybrid systems
formulation of the multi-mode drone, to obtain the necessary opti-
mality conditions, and to solve for the associated optimal inputs and
trajectories.
The main contribution of this paper is that a new class of drones

capable of both flying and sailing is modeled and optimally con-
trolled within the hybrid systems framework which, to the best of
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our knowledge, has not appeared before in the literature. In addition
to flying+sailing drones, the theoretical foundations and numerical
algorithms in this paper are applicable to a broad class of multi-
modal robotics systems.
The scenario studied in this article is the motion of the drone in a

vertical plane passing through the initial position and a desired ter-
minal position, where the initial condition is provided in the flying
mode and the terminal conditions are in the sailing mode; hence, the
drone must switch from the flying mode to the sailing mode at an
intermediate time during its motion, where this switching in dynam-
ics becomes possible only when the drone’s location coincides with
a locus on the loci of points on the water surface. Upon switching of
the dynamics from flying to sailing, the dimension of the state space
necessarily changes as the vertical motion of the drone becomes
restricted to the water surface.
The structure of the paper is as follows. Section 2 presents hybrid

systems formulation of the flying+sailing drone. Section 3 presents
the HMP and the associated HMP–MAS algorithm. The implemen-
tation of the HMP for the minimization of the total control effort,
and for the minimization of the time required for the drone to
reach the desired terminal state from its initial state are, respec-
tively, presented in Secs. 4 and 5. Numerical simulations are pre-
sented in Sec. 6. Conclusion and future research directions are
presented in Sec. 7.

2 Hybrid Systems Model of the Drone
2.1 Problem Definition and Modeling Assumptions. We

consider a drone capable of both flying and sailing. For the scenario
shown in Fig. 1, the drone begins its maneuver in flying mode and
aims to reach a fixed terminal state over the water surface. In this
scenario, a segment of the trajectory corresponds to flying and the
other segment corresponds to sailing, thus the system is exhibiting
hybrid systems behavior. In the current study, we assume that the
change of dynamics from flying to sailing and vice versa are instan-
taneous, i.e., the time and the associated control effort for transition-
ing between the two modes are negligible. This instantaneous
change assumption, in particular, includes the immediate change
in the pitch angle of the drone, as shown in Fig. 1, where the
drone’s configuration right after the switching (the initiation of
the sailing mode) displayed in gray immediately follows the
drone’s configuration just before the switching (the termination of
the flying mode) displayed in black. While this simplifying assump-
tion introduces errors in the dynamics modeling and costs, these
errors are within a tolerable range in a simplified model of the
robotic system considered in this paper; a more detailed modeling
and controller synthesis with the consideration of the transition
phase as a separate mode in the hybrid systems formulation of the
system is a part of future investigations.
A key characteristic of hybrid systems exhibited by this robotic

system is the change in the dimension of the state space as the
system switches from flying to sailing and vice versa. Another
key characteristic of hybrid systems in this system is the presence

of autonomous switching for the change of the dynamics from
flying to sailing, which are triggered only when the drone reaches
the water surface.

2.2 Hybrid Problem Formulation. For scenarios where the
maneuver occurs within the XZ plane passing through the initial
and terminal positions and the yaw angle is within the same
plane, the equation of motion of the drone can be simplified as an
in-plane motion. For brevity of notation, we assume m= g= 1.
The nondimensionalization state space dynamic of the drone in
the flying mode is expressed as [9]

ẋq1 =

ẋ1
ẋ2
ẋ3
ẋ4
ẋ5

⎡
⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎦ = fq1 (xq1 , u) =

x2
uT sin x5

x4
uT cos x5 − 1

uR

⎡
⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎦, t ∈ [0, ts] (1)

subject to the initial condition xq1 (t0) = x0, where x1 and x3 are,
respectively, the horizontal and vertical positions of the drone, x2
and x4 are, respectively, the horizontal and vertical velocities, and
x5 is the pitch angle, uT is the thrust force, and uR is the pitch
rate, which are taking values from the set [−2, +2]. The dynamics
of the drone in the sailing mode are written as

ẋq2 =
ẋ1
ẋ2
ẋ3

⎡
⎣

⎤
⎦ = fq2 (xq2 , u) =

x2
uT sin x3

uR

⎡
⎣

⎤
⎦, t ∈ [ts, tf ] (2)

where x1, x2, uT, and uR are as before, and x3 is the pitch angle. At
the switching instant, the system’s state before and after switching
are related by the boundary condition

xq2 (ts) = ξq1q2 (xq1 (ts − )) ≡ ξq1q2 lim
t→ts

xq1 (t)

( )
(3)

where ts indicates the time of the autonomous switching of when the
drone finishes flying and begins sailing, and ξq1q2 is the state transi-
tion jump map described by

xq2 = ξq1q2 (xq1 ) =
x1
x2

x5 + δ

⎡
⎣

⎤
⎦ (4)

where δ is the difference between the pitch angles in the flying and
sailing modes. The switching manifold which is the condition
required to be satisfied for the flying mode to end and for the
sailing mode to begin and corresponds to the drone landing over
the water surface is expressed by mq1q2 (xq1 ) = 0, where

mq1q2 (xq1 ) = x3 ≡ z (5)

The objective of the associated hybrid optimal control problem
(HOCP) is to identify the inputs to minimize the hybrid perfor-
mance expressed by

J =
∫ts
0
ℓq1

(
xq1 (s), u(s)

)
ds +

∫tf
ts

ℓq2
(
xq2 (s), u(s)

)
ds (6)

where ℓq1 and ℓq2 are cost functions associated with flying and
sailing, respectively. In the problem of time minimization, the
costs ℓq1 , ℓq2 are set to be equal to 1, and in the case of minimizing
the control effort, these running cost functions are taken to be
1
2
u⊤Ru, where R = R⊤ > 0.

3 The Hybrid Minimum Principle and the Associated
Algorithm
THEOREM 1 ([25, Theorem 3.2]). Consider the hybrid system H

subjected to assumptions A0–A3 in [19, Appendix A] and theFig. 1 Schematic view of the flying+sailing drone
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HOCP with the hybrid performance function (6). Define the family
of system Hamiltonians as

Hq(xq, λq, uq, t) = ℓq(xq, uq, t) + λ⊤q fq(xq, uq, t) (7)

where in the current paper q∈ {q1, q2}≡ {flying, sailing},
x flying, λ flying ∈ R5, xsailing, λsailing ∈ R3, and also u flying,
usailing ∈ U ⊂ R2. Then, for an optimal input u* and along the cor-
responding optimal trajectory x*, there exists an adjoint process λ*
such that

Hq x∗q, λ
∗
q, u

∗
q, t

( )
≤ Hq x∗q, λ

∗
q, uq, t

( )
(8)

where x∗q and λ* satisfy Hamiltonian canonical equations

ẋ∗q =
∂Hq

∂λq
(x∗q, λ

∗
q, u

∗
q, t) ≡ f x∗q, u

∗
q, t

( )

λ̇
∗
q = −

∂Hq

∂xq
(x∗q, λ

∗
q, u

∗
q, t)

(9)

≡ −
∂ℓq
∂x

x∗q, u
∗
q, t

( )
−
∂fq
∂x

x∗q, u
∗
q, t

( )⊤
λ∗q (10)

subjected to

x∗q1 (t0) = x0 (11)

x∗q2 (ts) = ξq1q2 x∗q1 (ts−)
( )

(12)

λ∗q1 (ts) = ∇ξq1q2
∣∣⊤
xq1 (ts−)

λ∗q2 (ts +) + p∇m|xq1 (ts−) (13)

x∗q2 (tf ) = xf (14)

Moreover, at the optimal switching time ts, the Hamiltonian satisfies

Hq1 x∗, λ∗, u∗( )∣∣ts−=Hq2 x∗, λ∗, u∗( )∣∣ts+ (15)

In addition, whenever tf is not a priori fixed (in the time-optimal
case), the Hamiltonian satisfies

Hq2 x∗, λ∗, u∗( )|tf = 0 (16)

The associated HMP–MAS algorithm [20] for the flying+sailing
drone is presented in Algorithm 1.

Algorithm 1 HMP–MAS algorithm for the flying+sailing drone

System Initialization
while μ > εf do

For each mode q, solve TP-BVP using Eqs. (9) and (10)
Calculate p using Eq. (19)
Update ts using Eq. (17)
Update ys using Eq. (18)
Update μ using Eq. (20)

end while

At the beginning step of the HMP–MAS algorithm for flying
+sailing drone, initial values including termination tolerance εf ,
step size rk, are fixed, the iteration counter is set to zero, i.e., k=
0, switching time tks and the pre-switching state yks = xq1 (ts−) ≡
xq1 (ts) are initiated.
In each iteration, two sets of decoupled two-point boundary value

problems (TP-BVP) are solved, and then the corresponding cou-
plings appear in the updates, which yield new switching pairs tk+1s

and yk+1s as

tk+1s = tks − rk
(
Hk

q1
− Hk

q2

)
yk+1s (ts) = yks (ts) − rkm

k(ts)∇m
(17)

−rk
(
∇ξ⊤q1q2λ

k
q2
(ts) + pk∇m − λkq1 (ts)

)
(18)

where the scalar p is

pk =
Hk

q2
− Hk

q1
+ f kq1 (ts)

⊤ λkq1 (ts) − ∇ξ⊤q1q2λ
k
q2
(ts)

( )
f kq1 (ts)

( )⊤
∇mk

i

(19)

As established in Ref. [20], the updates (17) and (18) result in con-
vergence to the optimal switching time ts and optimal switching
point ys and these updates correspond to decent directions of the
auxiliary cost

μk =
Hk

q1
− Hk

q2

∇ξ⊤q1q2λ
k
q2
(ts) + pk∇m − λkq1 (ts)

[ ]∥∥∥∥∥
∥∥∥∥∥
2

+ mk(ts)
∣∣ ∣∣2 (20)

4 The Minimum Control Effort Problem
In this section, the HMP is presented for the flying+sailing drone

in order to calculate control effort minimization. The corresponding
steps in the HMP are as follows:

4.1 Hamiltonian Minimization. The Hamiltonian for flying
mode is written as

Hq1 = ℓq1 + λ⊤q1 fq1 =
1
2
u⊤Ru + λ1x2 + λ2uT sin x5

+ λ3x4 + λ4(uT cos x5 − 1) + λ5uR

(21)

and the Hamiltonian for sailing mode is expressed as

Hq2 = ℓq2 + λ⊤q2 fq2 =
1
2
u⊤Ru + λ1x2 + λ2uT sin x3 + λ3uR (22)

Thus the Hamiltonian minimization for flying mode yields

∂Hq1

∂u
= 0 ⇒ uT

uR

[ ]
= − λ2 sin x5 + λ4 cos x5

λ5

[ ]
(23)

and for sailing mode, it yields

∂Hq2

∂u
= 0 ⇒ uT

uR

[ ]
= − λ2 sin x3

λ3

[ ]
(24)

4.2 Continuous State Evolution. The continuous state
dynamics from the Hamiltonian canonical Eq. (9) are equal to the
dynamics of flying and sailing modes (1) and (2) with the substitu-
tion of Eqs. (23) and (24) for the inputs, subject to the initial, bound-
ary, and terminal conditions

xq1 (t0) = x0 (25)

xq2 (ts) = ξq1q2 xq1 (ts)
( )

(26)

xq2 (tf ) =
x(tf )
ẋ(tf )
θ(tf )

⎡
⎣

⎤
⎦ (27)

where the autonomous transition dynamic from the flying mode to
the sailing mode is subject to the switching manifold condition

mq1q2 (xq1 ) ≡ z = 0 (28)
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4.3 Evolution of the Adjoint Process. The Hamiltonian
canonical Eq. (10) in the HMP yields the dynamics of the adjoint
process for flying mode in t∈ [0, ts] as

λ̇q1 = −
∂Hq1

∂xq1
=

λ̇1
λ̇2
λ̇3
λ̇4
λ̇5

⎡
⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎦ =

0
−λ1
0

−λ3
λ4uT sin x5 − λ2uT cos x5

⎡
⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎦ (29)

which, with the substitution of Eq. (23), λ̇5 is expressed as

λ̇5 = λ22 − λ24
( )

sin x5 cos x5 − λ4λ2 sin2 x5 − cos2 x5
( )

(30)

Furthermore, the dynamics of the adjoint process for sailing mode in
t∈ [ts, tf] is written as

λ̇q2 = −
∂Hq2

∂xq2
=

λ̇1
λ̇2
λ̇3

⎡
⎣

⎤
⎦ =

0
−λ1

−λ2uT cos x3

⎡
⎣

⎤
⎦ (31)

where with the substitution of Eq. (24), λ̇3 is written as

λ̇3 = λ22 sin x3 cos x3 (32)

The boundary conditions for λ are determined from

λq1 (ts) =∇ξq1q2
∣∣⊤
xq1(ts−)

λq2 (ts + ) + p∇m|xq1(ts−) (33)

Fig. 2 The flying+sailing drone states, the adjoint processes, control inputs, and the corre-
sponding Hamiltonian for the minimum time problem
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5 The Minimum Time Problem
For establishing the results of the HMP for the minimization of

the time, the corresponding steps are as follows.

5.1 Flying Mode. The Hamiltonian for flying mode is written
as

Hq1 = ℓq1 + λ⊤q1 fq1 = 1 + λ1x2 + λ2uT sin x5

+ λ3x4 + λ4(uT cos x5 − 1) + λ5uR
(34)

The Hamiltonian minimization (8) for the Hamiltonian (34) yields
the optimal values u∗R and u∗T , where for the input uR we obtain

u∗R = argmin
uR∈[−2, +2]

λ5uR{ } (35)

which takes the values −2 and +2 whenever λ5 is, respectively,
strictly positive and strictly negative. In order to determine the
singular arcs corresponding to λ5= 0, we need to study the case
of λ̇5 = 0 from Eq. (29), which yields

x∗5 = arctan
λ2
λ4

( )
(36)

thus giving u∗R,s for singular arcs as

u∗R,s = ẋ∗5 =
λ2λ3 − λ1λ4
λ22 + λ24

(37)

Hence, the control input u∗R for time-optimal is given by

u∗R =
+2 if λ5 < 0
u∗R,s if λ5 = 0
−2 if λ5 > 0

⎧⎨
⎩ (38)

Fig. 3 The flying+sailing drone states, the adjoint processes, control inputs, and the corre-
sponding Hamiltonian for the minimum control effort problem
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Moreover, the control input uT is obtained as

u∗T = argmin
uT∈[−2, +2]

λ2uT sin x5 + λ4uT cos x5{ } (39)

where the minimizing values of uT, which depend on the sign of
(λ2sin x5+ λ4cos x5) are determined by

u∗T =
+2 if λ2 sin x5 + λ4 cos x5 ≤ 0
−2 if λ2 sin x5 + λ4 cos x5 > 0

{
(40)

It is worth mentioning that the control input u∗T does not contain sin-
gular arcs, see, e.g., Ref. [9].

5.2 SailingMode. The Hamiltonian for sailing mode is written
as

Hq2 = ℓq2 + λ⊤q2 fq2 = 1 + λ1x2 + λ2uT sin x3 + λ3uR (41)

Similar to Sec. 5.1 for control input uR we obtain

u∗R = argmin
uR∈[−2, +2]

λ3uR{ } (42)

Hence, control input u∗R for sailing mode is expressed as

u∗R =
+2 if λ3 < 0
0 if λ3 = 0
−2 if λ3 > 0

⎧⎨
⎩ (43)

In addition, the control input uT is obtained as

u∗T = argmin
uT∈[−2, +2]

λ2uT sin x3{ } (44)

Hence, the optimal input u∗T for sailing mode is given by

u∗T =
+2 if λ2 sin x3 ≤ 0
−2 if λ2 sin x5 > 0

{
(45)

6 Numerical Simulation
We consider the initial condition of the drone to be in the flying

mode with xq1 (t0 = 0) = [0, 0.1, 10, −0.5, π/16]⊤ and study the
case where the drone aims to reach a fixed terminal location with
x(tf)= 20 m over the surface of the water, i.e., z(tf)= 0. We consider
δ= 25 deg for the instantaneous change in the pitch angle at the
switching instance. The results for the time-optimal problem includ-
ing states, adjoints, control inputs, and Hamiltonian are shown in
Fig. 2. The optimal inputs uT and uR obtained from Eqs. (38),
(40), (43), and (45) for the time-optimal problem are displayed in
Fig. 2 which, due to the bang-bang nature of minimum time

solutions, these values switch between −2 and +2. The minimum
terminal time is obtained as tf= 6.138 s and the optimal switching
time is ts= 2.783 s. In this solution, the optimal states at the switch-
ing instant are xq1 (ts) = [9.51, 1.78, 0, −3.17, −1.05]⊤.
The results of the optimal control problem including states,

adjoints, control inputs, and Hamiltonian for the minimiza-
tion of control effort over a period of [t0, tf]= [0, 15] with a
fixed terminal state are shown in Fig. 3. In this scenario, the
optimal autonomous switching between flying and sailing
modes occurs at ts= 6.2 s at the optimal switching state xq1 (ts)=
[7.26, 1.42, 0, −3.64, −0.31]⊤.

7 Concluding Remarks
This paper presents a hybrid systems formulation for a robotic

system with maneuvers consisting of both flying and sailing. The
presented hybrid systems formulation captures the key aspects of
these robotic systems and, in particular, the changes in the dimen-
sion of the state space as the system switches from flying to
sailing and vice versa, as well as the presence of autonomous
switching which is triggered only upon the landing of the drone
over the water surface. In this study, the transition time between
flying and sailing is considered to be negligible, hence the hybrid
systems model does not include a separate mode for the intermedi-
ate phase in which the drone has landed on the water but is not yet
fully operating in the lower dimensional sailing mode. This simpli-
fying assumption is justified considering that at this stage, only a
high-level control synthesis is being studied. The necessary opti-
mality conditions of the HMP and the associated HMP–MAS algo-
rithm for numerical simulations are shown to be effective tools in
providing solutions to the associated hybrid optimal control prob-
lems both for the minimization of time and the minimization of
the control effort for the multi-modal robotic system. It shall be
remarked, however, that due to the nonlinear nature of the drone
dynamics, numerical solutions of the associated TP-BVPs are sen-
sitive to the initial guess, especially for the state component x5≡ θ.
Moreover, the HMP–MAS algorithm for the determination of
optimal time switching ts and optimal switching states is slowly
converging (an order of 105 iterations is required for convergence)
and, hence, recalculations are time-consuming.
Future research directions include establishing a more detailed

dynamics model considering all six degrees-of-freedom in the
flying mode and five degrees-of-freedom in the sailing mode, and
solving the associated hybrid optimal control problems employing
the HMP–MAS algorithm. Another future direction is the accom-
modation of obstacle avoidance in the controller synthesis. A
third line of future work includes the implementation of these the-
oretical results on an actual flying+sailing drone, particularly on
Splash Drone 4 by Swellpro displayed in Fig. 4 as well as testing
the multi-modal robotic system in real environments. An essential
step in the practical implementation of the results, as mentioned
earlier, is to establish separate hybrid modes for the transitioning
of the drone from flying to sailing and vice versa based on the
dynamics behavior of the corresponding robotic system.
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