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Abstract— Mean-field games (MFG) were introduced to effi-
ciently analyze approximate Nash equilibria in large population
settings. In this work, we consider entropy-regularized mean-
field games with a finite state-action space in a discrete time
setting. We show that entropy regularization provides the
necessary regularity conditions, that are lacking in the standard
finite mean field games. Such regularity conditions enable us to
design fixed-point iteration algorithms to find the unique mean-
field equilibrium (MFE). Furthermore, the reference policy used
in the regularization provides an extra parameter, through
which one can control the behavior of the population. We
first consider a stochastic game with a large population of N
homogeneous agents. We establish conditions for the existence
of a Nash equilibrium in the limiting case as N tends to
infinity, and we demonstrate that the Nash equilibrium for the
infinite population case is also an ϵ-Nash equilibrium for the N -
agent system, where the sub-optimality ϵ is of order O

(
1/

√
N
)
.

Finally, we verify the theoretical guarantees through a resource
allocation example and demonstrate the efficacy of using a
reference policy to control the behavior of a large population.

I. INTRODUCTION

Decision making in decentralized systems arises in many
applications, ranging from multi-robot task allocation [1]–
[3], finance [4]–[6], etc. The scalability of the solution to
large populations is an important consideration in these
settings, as the complexity of the system increases drastically
with the number of agents.

To address the scalability issues, the mean field approach
was introduced in [7]–[9]. The mean-field game (MFG)
formulation reduces the interactions among agents to a game
between a representative agent and a population of infinitely
many other agents. Such a population is often referred to
as the mean field, and the solution in this limiting case is
the mean-field equilibrium (MFE). In the continuous setting,
the MFE is characterized by a Hamilton-Jacobi-Bellman
equation (HJB) coupled with a transport equation. The HJB
equation describes the optimality conditions for the policy of
the representative agent, and the transport equation captures
the evolution of the population distribution. Furthermore,
the optimal policy computed by the representative agent
constitutes an ϵ-Nash equilibrium when all the agents in the
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finite N -population deploy this policy, for some sufficiently
large N . The existence and uniqueness of such an optimal
policy have been established in [7].

Although the discretization of continuous MFG has been
studied in prior works [10], direct analysis results for
discrete-time and finite state-action space MFG are still
relatively sparse. One of the challenges in the finite MFG
is the absence of regularity conditions regarding the mean
field [11]. That is, when the population mean field changes
slightly, the corresponding optimal policy for the represen-
tative agent could change drastically [12]. Previous works
have used Boltzmann policies [13] and projection to meshed
probability measure spaces [11] to avoid such issues. More
recent works [14] directly introduced a relative entropy term
to the reward structure to provide regularity conditions. The
authors in [12] used entropy-regularization to stabilize the
iterative algorithm and reduced regularization over time to
learn the original MFE. The existence and uniqueness of the
entropy-regularized MFE was also examined.

Different from these previous works, in this paper we
explicitly consider the reference policy in the entropy-
regularization as an extra feature that allows us to control
the behavior of a large population. Consider the situation,
for instance, where a “coordinator” of a large population of
agents desires to impose a certain group behavior, but it does
not have access to the actual rewards. The agents are selfish
and not concerned about the overall performance of the
population, but they have access to the actual rewards. If the
coordinator designs a policy and forces the whole population
to adopt it, the result could be undesirable, as such a policy
will not be informed of the actual agent rewards. Without a
reference policy, however, agents may fail to find the MFE,
or they may find an MFE that does not induce a desirable
group behavior. We argue that the entropy-regularized MFG
is a good framework to model such scenarios. Through a
resource allocation example, we show that one can encode
desired population behaviors into the reference policy. By
adjusting the multiplier of the regularization term, one can
further produce a tunable behavior of the population that
balances the encoded behavior and the cumulative rewards.

Contributions: In this work, we formulate a game of N -
homogeneous agents and show that under pairwise coupled
rewards, the state of the system can be exactly represented
by a distribution over the state space. We then consider
the limiting infinite population game and introduce entropy
regularization to construct contraction operators to find the
unique regularized MFE. We consider a special class of
MFGs where the agents have coupled rewards but decou-
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pled dynamics. For this class of MFGs, we streamline and
simplify the convergence proof in [12]. Finally, we verify
the theoretical results through a numerical example for a
resource allocation problem and demonstrate that certain
performance is not possible without entropy-regularization
and a properly selected reference policy.

II. PROBLEM FORMULATION

Consider a large population game consisting of N homo-
geneous agents, where N ≫ 1. We define the game through
the tuple ⟨S,A, T ,R1, . . . ,RN , N,H⟩. The game is over a
discrete-time with a finite horizon H . In this formulation, we
assume that all agents share the same finite state space S and
the same finite action space A. At time t, agent i takes an
action ait ∈ A and transitions from state sit to sit+1 according
to the dynamics T , which we will discuss in greater detail
later on. As a consequence of its own action, agent i receives
a reward Ri

t(s
i
t, a

i
t, s

−i
t ), where s−i

t is a shorthand notation
for (s1t , . . . , s

i−1
t , si+1

t , . . . , sNt ). Each agent follows a (time-
varying) Markov policy πi = {πi

t}Ht=0, such that, at each time
step t, this policy is a mapping πi

t : S ×A → [0, 1]. We use
Π to denote the space of admissible policies. For simplicity,
we use t ≤ H to denote that t ∈ {0, . . . , H}.

a) Dynamics: We assume that all agents have the same
decoupled dynamics T : S × S × A → [0, 1]. The value
of T (st+1|st, at) represents the probability of transitioning
from state st to state st+1 under action at.1 In the sequel, we
use the notation T (·|·, πi

t) to denote the dynamics of agent
i following the policy πi

t. Formally,

T (sit+1|sit, πi
t) =

∑
ai
t∈A

T (sit+1|sit, ait) πi
t(a

i
t|sit). (1)

Assuming that all agents start with the same initial state
distribution µ0 and that each agent i deploys a policy πi,
we have N independent processes, where the i-th process
follows the dynamics

sit+1 ∼ T
(
· |sit, πi

t

)
, t = 0, . . . , H−1, si0 ∼ µ0. (2)

b) Rewards: The reward of agent i at time t is

Ri
t(s

i
t, a

i
t, s

−i
t ) = Θt

( 1

N

N∑
k=1

Lt(s
i
t, a

i
t, s

k
t )
)
, (3)

where Θt : R → R and Lt : S ×A× S → R.

Assumption 1. The function Θt is uniformly globally Lip-
schitz continuous in t with Lipschitz constant KΘ. That is,
for all x, y ∈ R and t ≤ H , |Θt(x)−Θt(y)| ≤ KΘ |x− y|.

Assumption 2. There exists a positive Lmax such that, for
all s, s′ ∈ S, a ∈ A and t ≤ H , |Lt(s, a, s

′)| ≤ Lmax.

The maximum magnitude of the reward is Rmax =
max|x|≤Lmax,t≤H |Θt(x)|. Note that the reward in (3) is
indifferent to the ordering of the agents. As a consequence,
agent i’s reward can be computed, given only the fraction
of agents at each state. This observation motivates the

1We use si ∈ S to denote the state of the specific agent i, and s ∈ S to
denote the state of a generic agent. Similar rules apply to ai and a.

aggregation of the system state (s1t , . . . , s
N
t ) to a distribution

of the agents’ states.
c) Empirical distribution: For the N processes in (2),

we define the empirical distribution at time t as

µN
t (s) =

1

N

N∑
k=1

1s(s
k
t ), s ∈ S, (4)

where 1x is the indicator function, i.e., 1x(y) = 1 if y =
x, and 0 otherwise. The empirical distribution flow is then
defined as µN = {µN

t }Ht=0. Note that
∑

s µ
N
t (s) = 1, and

thus µN
t is a probability measure over S. We denote the

space of probability measures over S as P(S). Then, M =(
P(S)

)H+1
is the space of the probability measure flows

and µN ∈ M.
d) Metric spaces: We use total variation [15] as the

metric for the probability measure space P(X ). When
X is finite, the total variation between ν, ν′ ∈ P(X )
is given by dTV(ν, ν

′) = 1
2

∑
x∈X |ν(x) − ν′(x)| =

1
2

∥∥ν(x) − ν′(x)
∥∥
1
. We equip both M and Π with

the supremum metric induced by the total variation.
That is, for µ, µ′ ∈ M, we define dM(µ, µ′) =
maxt≤H dTV (µt, µ

′
t) , and for policies π, π′ ∈ Π

dΠ(π, π
′) = maxt≤H maxs∈S dTV (πt(s), π

′
t(s)) , where

πt(s) ∈ P(A) is the distribution the policy assign over
actions when an agent is at state s. It can be shown that both
(M,dM) and (Π,dΠ) are complete metric spaces [15].

e) Distribution induced rewards: Due to symmetry, the
state-coupled reward in (3) can be characterized through
the empirical distribution. Overloading the notation, we also
write

Lt(s
i
t, a

i
t, µ

N
t )

∆
=

∑
s′∈S

Lt(s
i
t, a

i
t, s

′)µN
t (s′)

=
∑
s′∈S

Lt(s
i
t, a

i
t, s

′)
( 1

N

N∑
k=1

1s′(s
k
t )
)

=
1

N

N∑
k=1

( ∑
s′∈S

Lt(s
i
t, a

i
t, s

′)1s′(s
k
t )
)

=
1

N

N∑
k=1

Lt(s
i
t, a

i
t, s

k
t ).

With the above definition, we further define the distribution-
induced reward for each agent as

Ri
t(s

i
t, a

i
t, µ

N
t )

∆
= Θt

(
Lt(s

i
t, a

i
t, µ

N
t )

)
. (5)

Lemma 1. The reward function Ri
t(s, a, µ) in (5) is globally

Lipschitz with respect to the probability measure µ ∈ P(S),
with Lipschitz constant 2KΘ Lmax.

Proof. Please see full version of the paper [16].

f) Expected cumulative reward: The expected cumu-
lative reward of agent i induced by the joint policies
(π1, . . . , πN ) is given by

J i,N (πi, π−i) = E
[ H∑

t=0

Ri
t(s

i
t, a

i
t, µ

N
t )

]
, (6)
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where the expectation is taken over the system trajectories
with each agent i starting with initial distribution µN

0 and
following the policy πi. Each agent’s objective is to select a
policy that maximizes its own expected cumulative rewards.
We therefore have N coupled optimization problems:

max
πi∈Π

J i,N (πi, π−i), i = 1, . . . , N. (7)

One of the most common solution concepts for a game
with such coupled optimization is the Nash equilibrium [17].

Definition 1. A Nash equilibrium (NE) is a tuple
(π1∗, . . . , πN∗) such that, for all i = 1, . . . , N ,

J i,N (πi, π−i∗) ≤ J i,N (πi∗, π−i∗), ∀πi ∈ Π.

Definition 2. For ϵ ≥ 0, an ϵ-Nash equilibrium is a tuple
(π1∗, . . . , πN∗) such that, for all i = 1, . . . , N ,

J i,N (πi, π−i∗) ≤ J i,N (πi∗, π−i∗) + ϵ, ∀πi ∈ Π. (8)

In other words, any unilateral deviation from an ϵ-NE can
improve an agent’s performance by at most ϵ.

In this work, we further restrict our attention to identical
policies for all agents.

Assumption 3. For all i, j ∈ {1, . . . , N}, πi = πj .

Assumption 3 leads, in general, to a loss in performance [18].
However, identical policy is a standard assumption in the
literature of large scale systems for reasons of simplicity
and robustness [19]. In light of Assumption 3, henceforth,
we will drop the superscripts on the policies and denote the
policy used by all agents as π.

III. MEAN FIELD APPROXIMATION

As N approaches infinity, the limiting game constitutes
the mean field game. The mean field is defined as the
empirical distribution of the infinite population. We denote
the mean field at time t as µt. Aside from describing the
infinite population, the introduction of the mean field also has
attractive computational benefits. Recall that the empirical
distribution in (4) is a random vector. To properly evaluate
the expected reward with the nonlinear function Θt in (3),
one needs the distribution of µN

t at each time step. In general,
the propagation of the distribution of µN

t is computationally
expensive. On the other hand, under the identical policy π
used by all (infinite in number) agents, the trajectory of the
mean field is deterministic [14]. Furthermore, µt follows a
simple propagation rule:

µt+1 = µt [T (πt)] , (9)

where [T (πt)] is a right stochastic matrix constructed based
on (1). We refer to the time sequence µ = {µt}Ht=0 ∈ M as
the mean field flow.

It is tempting to approximate the empirical distribution of
a finite N -population with the mean field. Indeed, as we will
show later, the empirical distribution converges to the mean
field as the number of agents approaches infinity.

A. Representative Agent

Before tackling the large population game with N agents,
we consider the limiting infinite population case by spec-
ifying the behaviour of the representative agent. Since the
effect of dynamic uncertainties on all agents takes the same
form, the mean field flow µ can be solely generated from
the representative agent dynamics and its policy. Assuming
that the mean field flow µ is known and fixed, this yields
a standard Markov Decision Process (MDP) ⟨S,A, T ,Rµ⟩.
The state space, action space and the transitions of the
induced MDP come directly from the original game. The
reward induced by the mean field µ is given by

Rµ,t(s, a) = Θt

(
Lt(s, a, µt)

)
. (10)

The representative agent can then maximize its expected
cumulative reward given the mean field flow µ as follows:

Jµ(π
∗) =max

π∈Π
Eµ0

[
H∑
t=0

Rµ,t(st, at)

]
. (11)

Note that the optimal policy depends on µ. We use the
operator Bopt : M → Π to denote the mapping from the
mean field flow to an optimal policy of the induced MDP:2

π∗ = Bopt (µ) . (12)

When all agents employ the policy π of the representative
agent, a new mean field flow µ is induced and can be
propagated via (9) starting from µ0. We use the operator
Bprop : Π → M to denote this propagation. That is,

µ = Bprop (π) . (13)

The mean-field equilibrium (MFE) of a mean-field game
is defined as a consistent pair (π∗, µ∗) ∈ Π×M such that

π∗ = Bopt

(
µ∗), µ∗ = Bprop(π

∗). (14)

The existence of such consistent pair can be established
through a Brouwer’s fixed point argument [20].

One may attempt to use fixed-point iterations to find a
solution to (14). Unfortunately, the composed mean-field
equilibrium (MFE) operator Γ = Bprop ◦ Bopt is only
non-expansive and not a contraction, in general. The non-
contractiveness of the MFE operator Γ comes from the
hard maximization within the MDP optimization Bopt, where
slightly different induced rewards may lead to significantly
different optimal policies. Consequently, even if two initial
mean-field flows are close, they may induce totally different
optimal policies, which then leads to two new mean-field
flows that are far apart. For a more detailed discussion, one
may refer to [12].

2In general, Bopt is a set-valued function, since the optimal policy of an
MDP need not be unique.
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IV. ENTROPY-REGULARIZED MEAN FIELD GAMES

Entropy regularization is a technique used extensively to
stabilize learning algorithms and to reduce the maximization
bias [21]. The extra entropy cost introduced to the reward
structure prevents abrupt policy changes between iterations.

To address the issue of non-contractiveness of the operator
Γ, we introduce an entropy-regularization term and replace
the hard maximization in Bopt with a soft maximization.
With the soft maximization, a small change in the mean field
flow will not result in an abrupt change in the optimal policy
of the representative agent, thus inducing a contractive MFE
operator.

Given a reference policy ρ ∈ Π such that ρt(a|s) > 0
for all t ≤ H, s ∈ S , and a ∈ A, we introduce an entropy
regularization term to (11) as follows:

JKL
µ (π; ρ) = E

[
H∑
t=0

(
Rµ,t(st, at)−

1

β
log

πt(at|st)
ρt(at|st)

)]
,

where β > 0 is the inverse temperature, and it is a design
parameter. The reference policy can encode any preference
one has about the population behavior.3 When β is small,
the regularization term is dominant, and π approaches the
reference ρ. When β is large, the agent is allowed to diverge
from the reference policy to increase the collected rewards.
As a consequence, the optimal π approaches a greedy policy
produced by Bopt as in (12).

A. Optimization for the Regularized MDP

It can be shown that the unique optimal policy that
solves maxπ J

KL
µ (π; ρ) is given by the following (weighted)

Boltzmann distribution [21]

πKL
µ,t (a|s) =

1

Zt(s)
ρt(a|s) exp

[
βQKL

µ,t (s, a; ρ)
]
, (15)

where Zt(s) is a normalization factor, and the entropy-
regularized state-action value function QKL

µ,t is computed as:

QKL
µ,t (s, a; ρ) = Rµ,t(s, a)

+
∑

s′ T (s′|s, a)
(

1
β log

∑
a ρt(a|s) exp

[
βQKL

µ,t+1(s, a; ρ)
] )

,

with the boundary condition QKL
µ,H(s, a; ρ) = Rµ,H(s, a).

As the entropy-regularized optimal policy is induced by
the given mean field, we denote the operation performed
in (15) using the operator BKL

opt,β : M → Π. We can
then define the entropy-regularized MFE (ER-MFE) operator
ΓKL
β : M → M as

ΓKL
β = Bprop ◦ BKL

opt,β , (16)

The regularized equilibrium is then defined as follows.

Definition 3. The entropy-regularized mean field equilibrium
(ER-MFE) is a consistent pair (πKL∗, µKL∗) ∈ Π×M such
that πKL∗ = BKL

opt,β(µ
KL∗) and µKL∗ = Bprop(π

KL∗).

In the sequel, we establish the existence and uniqueness
of the ER-MFE. The main goal is to show that the ER-
MFE operator is a contraction if β is selected properly. The

3When no information encoding is needed, one can use a uniform prior.

following derivation is more direct and easier to demon-
strate than the one reported in [12]. The reason is that
we are restricting ourselves to the case where the agents
have decoupled dynamics. As a consequence, a single agent
deviation from the optimal policy does not directly impact
the distribution of the rest of the population.

B. Convergence Analysis

We first establish the Lipschitz continuity of the operators
Bprop and BKL

opt,β .

Lemma 2. For all π, π′ ∈ Π, we have that

dM(Bprop(π),Bprop(π
′)) ≤ Kprop dΠ(π, π

′), (17)

where

Kprop =
|S|(|S|H − 1)

|S| − 1
. (18)

Proof. See the the full version of the paper [16].

The following two Lemmas are adopted from [12].

Lemma 3 ( [12]). Under Assumptions 1 and 2, the entropy-
regularized Q-function QKL

µ is Lipschitz with respect to µ
for arbitrary β > βmax and βmax > 0. That is,

max
t,s,a

∣∣∣QKL
µ,t (s, a; ρ)−QKL

µ′,t(s, a; ρ)
∣∣∣ ≤ KKL

Q dM (µ, µ′) ,

where KKL
Q = maxt≤H KKL

Q,t, and KKL
Q,t is defined as

KKL
Q,t = 2KΘLmax +

ρmax exp(2βmax(H+1)RmaxK
KL
Q,t+1)

ρmin
,

with boundary condition KKL
Q,H = 2KΘLmax, and ρmax =

maxt,s,a ρt(a|s) > 0, ρmin = mint,s,a ρt(a|s) > 0.

Lemma 4 ( [12]). Under Assumptions 1 and 2, the entropy-
regularized operator BKL

opt is Lipschitz, that is,

dΠ
(
BKL
opt,β(µ),BKL

opt,β(µ
′)
)
≤ KKL

opt,β dM (µ, µ′) ,

where,

KKL
opt,β =

|A|(|A| − 1)βρ2max

2ρ2min

KKL
Q . (19)

The Lipschitz continuity in Lemma 4 guarantees that a
small change in the mean field can only result in a small
change in the optimal policy. With the Lipschitz constants of
Bprop and BKL

opt,β , we arrive at the following result regarding
the selection of β to ensure that ΓKL

β is a contraction.

Theorem 1. The entropy-regularized mean-field equilibrium
(ER-MFE) operator ΓKL

β = Bprop ◦ BKL
opt,β is a contraction

for

β < min

{
βmax,

2ρ2min

ρ2max|A|(|A| − 1)

1

KKL
Q Kprop

}
. (20)

Proof. The β selection in (20) guarantees that
KpropK

KL
opt,β < 1. Consequently, the ER-MFE operator

ΓKL
β is a contraction.
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C. Error Bounds on the Mean Field Approximations

With the theoretical results established for the infinite-
population equilibrium, we now examine the performance
guarantee for applying the infinite-population equilibrium
to a finite N -agent system. We first present the following
lemma, which characterizes the asymptotic convergence of
the empirical distribution flow µN to the mean field flow µ.

Lemma 5. Suppose a mean field flow µ (infinite population)
is induced by the policy π. Let µN denote the empirical
distribution of an N -agent system, where all agents deploy
the same policy π. Then, for all t ≤ H ,

E
[
dTV

(
µN
t , µt

)]
= O

( 1√
N

)
. (21)

Proof. See the appendix.

Next, we show that the ER-MFE π∗ for the infinite
population is an ϵ-Nash equilibrium for the N -agent system.

Theorem 2. Consider an ER-MFE (π∗, µ∗).4 Then, for all
π̃ ∈ Π, we have

J i,N
KL (π̃, π∗) ≤ J i,N

KL (π∗, π∗) +O
(

1√
N

)
, (22)

where J i,N (π̃, π∗) is the value induced when agent i deviates
and applies policy π̃, and all other agents apply policy π∗.

Note that the N -agent trajectory under the optimal pol-
icy π∗ is given by sit+1 ∼ T

(
· |sit, π∗

t (s
i
t)
)

for i = 1, . . . , N .
Without loss of generality, we let agent 1 deviate and select
some other policy π̃. For both the optimal system and the
deviated system, the agents’ initial distributions are µ0. Then,
the trajectory of the deviated N -agent system is given by

s̃1t+1 ∼ T
(
· |s̃1t , π̃t(s̃

1
t )
)
,

s̃it+1 ∼ T
(
· |s̃it, π∗

t (s̃
i
t)
)
, for i = 2, . . . , N.

(23)

The following lemma characterizes the convergence of the
deviated empirical distribution to the optimal mean field.

Lemma 6. Let µ̃N denote the empirical distribution flow
resulted from the system in (23). Then, for all t ≤ H ,

E
[
dTV

(
µ̃N
t , µ∗

t

) ]
= O

( 1√
N

)
Proof. See the appendix.

We now present a proof for Theorem 2 using cross
disturbance analysis similar to [7].

Proof of Theorem 2. For the N -agent system, the value of
agent 1 induced by its policy deviation is bounded as

J1,N
KL (π̃, π∗) = E

H∑
t=0

[
Rt

(
s̃1t , π̃t, µ̃

N
t

)
− 1

β
log

π̃t(at|s̃1t )
ρt(at|s̃1t )

]

≤ E
H∑
t=0

[
Rt

(
s̃1t , π̃t, µ

∗
t

)
− 1

β
log

π̃t(at|s̃1t )
ρt(at|s̃1t )

]
+O

( 1√
N

)
(24)

4We drop the superscript KL for notation simplicity. Unless specified
otherwise, π∗ and µ∗ refer to the entropy-regularized optimal solutions.

≤ E
H∑
t=0

[
Rt

(
s1t , π

∗
t , µ

∗
t

)
− 1

β
log

π∗
t (at|s1t )
ρt(at|s1t )

]
+O

( 1√
N

)
(25)

= JKL(π
∗, π∗) +O

( 1√
N

)
. (26)

In (24), we used the convergence result in Lemma 6 and the
Lipschitz continuity of Rt to replace µ̃N

t with µ∗
t . To arrive

at (25), we used the optimality of π∗ in the regularized MDP
induced by µ∗.

We have shown that the difference between the value of
the deviated N -agent system and the optimal value of the
infinite population system is bounded by O(1/

√
N). Next,

we show that the value of the finite N -agent system under the
identical optimal policy π∗ for all agents is also O(1/

√
N)-

close to the optimal value of the infinite population system.
To see this, note that

J1,N
KL (π∗, π∗) = E

H∑
t=0

[
Rt

(
s1t , π

∗
t , µ

N
t

)
− 1

β
log

π∗
t (at|s1t )
ρt(at|s1t )

]

≤ E
H∑
t=0

[
Rt

(
s1t , π

∗
t , µ

∗
t

)
− 1

β
log

π∗
t (at|s1t )
ρt(at|s1t )

]
+O

( 1√
N

)
= JKL(π

∗, π∗) +O
( 1√

N

)
,

where the inequality is a result of the Lipschitz continuity
of Rt and the convergence result in Lemma 5. One can also
lower bound J1,N

KL (π∗, π∗) to obtain∣∣∣ J1,N
KL (π∗, π∗)− JKL(π

∗, π∗)
∣∣∣ = O

( 1√
N

)
. (27)

Combining (26) and (27), it follows that

J1,N
KL (π̃, π∗) ≤ J1,N

KL (π∗, π∗) +O
( 1√

N

)
.

Since the population is homogeneous, the same result applies
to all agents, thus completing the proof.

V. NUMERICAL EXAMPLE

In this section, a resource allocation problem is formulated
as a mean field game to verify the previous theoretical results.
Consider a dynamic resource allocation problem [3] over a
directed graph ⟨S, E⟩, shown in Fig. 1. We use S and E to
denote the set of nodes and edges, respectively. A large group
of agents traverse through the graph and collect the rewards
assigned at the terminal time step H , and no running reward
is assigned. At time H , if an agent is at state (node) 3, then it
receives a reward of 1.5. If it is at state 4, it receives a reward
of 1. Otherwise, the agent receives no reward. At the same
time, the agents are penalized for staying at a node with a
high population density. In summary, we have the following
state-coupled rewards

LH(si, ai, sk) = 1.51s3(s
i) + 1s4(s

i)︸ ︷︷ ︸
rewards at states 3 and 4

− 1si(s
k)︸ ︷︷ ︸

penalty of sharing
node with agent k

,

Lt(s
i, ai, sk) = 0, for all t = 0, . . . , H − 1.
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We set the nonlinear function in (3) to ΘH(x) = x2. Each
agent at a state s (graph node) can choose one of the adjacent
states s′ to visit at the next time step. That is, the action space
A(s) at state s is all the states s′ such that (s, s′) ∈ E .

Fig. 1. Graph for a resource allocation problem with self-loops.

If we directly use fixed-point iterations without entropy-
regularization to solve this mean field game, the algorithm
fails to converge. For the first iteration, the agents use a
policy that concentrates the whole population at node 3 for
the extra reward. At the next iteration, the penalty for staying
at node 3 is high given the mean field flow from the previous
iteration. The representative agent then constructs a policy
to visit node 4. In summary, the policy found by the Bopt

without regularization oscillates between concentrating on
node 3 and concentrating on node 4 at H .

Suppose now that a coordinator can send a command to
the group of agents, and it decides that both nodes 3 and 4
need to be occupied by some agents, but s/he does not have
access to the actual rewards at the two nodes. Consequently,
the coordinator can, at most, provide a reference policy to
guide the agents to node 3 and 4, but the decision of which
node is more rewarding to occupy can only be made by
the agents themselves. We constructed a reference policy ρ
that commands the agents to move to nodes 3 and 4.5 If
the reference policy is directly applied by the agents, then
the final distribution at nodes 3 and 4 are roughly the same,
which does not reflect the difference in the rewards.

We now use the constructed reference policy to form the
entropy-regularized MFG and solve the regularized game
using the operator ΓKL

β in (16) for two different β values.
The algorithm converges and the population distribution over
the nodes is depicted in Fig. 2. Recall that a larger β means
less regularization in the reward structure. In Fig. 2(a), with
a large β, the agents chase mainly the rewards, and the
reference policy from the coordinator has little effect. In this
scenario, the agents concentrate at node 3 up to the point
when an additional number of agents at the same node would
result in a penalty that diminishes the reward advantage that
node 3 has over node 4. In Fig. 2(b), the value of β is
small and the reference policy dominates. The agents start
to ignore the reward advantage that node 3 has, and follow
the reference policy instead. The parameter β enables us to
generalize the behavior beyond these two extremes and to
cover a continuous spectrum of population behavior.

5We may set, for example, ρ(s4|s2) = ρ(s3|s2) = 0.5 and ρ(s5|s4) =
0.01. This reference policy promotes the agents to move from state 2 to
states 3 and 4, while discourages agents to move from state 4 to state 5.

Fig. 2. Population distribution over time. Scenario in (a) has the inverse
temperature of β = 3, and scenario in (b) has β = 0.1.

Finally, to verify Theorem 2, we fixed the last N − 1
agents’ policy to the ER-MFE, and we computed the dis-
tribution of the random vector µN . We let the first agent
optimize the entropy-regularized MDP induced by µN . We
then compared the difference between its newly-optimized
performance and the performance should the agent adopt the
ER-MFE. A log-log plot of performance gain vs. number of
agents is presented in Fig. 3. The performance gain trend is
bounded by the reference line with a slope of −0.5, which
verifies our claim of the O(1/

√
N) convergence rate.

Fig. 3. Log-log plot of performance gain by an agent unilaterally deviating
in a finite population.

VI. CONCLUSION

In this article, an entropy-regularized mean-field game
with finite state-action space in a discrete time setting
was formulated and analyzed. We demonstrated that the
entropy-regularization provides the regularity conditions that
the standard MFG lacks. The conditions for a contractive
entropy-regularized mean-field equilibrium operator is pre-
sented. Furthermore, we provided a streamlined proof for
the performance bound of the entropy-regularized MFE in a
finite N -agent game. Through a resource allocation example,
we verified the theoretical results and demonstrated that the
reference policy for the entropy regularization can be used to
control the behavior of a large population, and the parameter
β allows us to cover a continuous spectrum of population
behaviors. Future work will involve extending the approach
to the case of two large teams of agents competing against
each other, modeled as a zero-sum game, while the dynamics
of agents within each team evolves as a mean field game.
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APPENDIX

Proof of Lemma 5. The empirical distribution is defined as

µN
t (s) =

1

N

N∑
i=1

1s(s
i
t). (28)

Let Xi
s = 1s(s

i
t). Since the dynamics are decoupled

and all agents use the same policy, with the same ini-
tial distribution, the random variables Xi

s are i.i.d. with
mean E

[
Xi

s

]
. As µN

t (s) is the sample mean of Xi
s, from

the strong law of large numbers [15], we have µN
t (s)

a.s.−−→
E
[
Xi

s

]
as N → ∞. Thus, we have that the mean field

satisfies P
{
µt(s)− E

[
Xi

s

]
̸= 0

}
= 0. The variance of Xi

s is
then Var(Xi

s) = E
[
Xi

s

]
−

(
E
[
Xi

s

] )2
= µt(s) (1− µt(s)) .

Here, we regarded µt(s) as a deterministic number and use
the property E

[
(Xi

s)
2
]

= E
[
Xi

s

]
as Xi

s is an indicator
function. Furthermore,

E
∥∥µN

t − µt

∥∥2
2
= E

∑
s∈S

|µN
t (s)− µt(s)|2

= E
∑
s∈S

∣∣∣ 1

N

N∑
i=1

(
Xi

s − E
[
Xi

s

]) ∣∣∣2
≤ 1

N

∑
s∈S

Var(Xi
s) =

1

N

∑
s∈S

µt(s)(1− µt(s))

=
1

N
(1− ∥µt∥22) ≤

1

N
.

By Jensen’s inequality, we have E
∥∥µN

t − µt

∥∥
2
≤ 1/

√
N.

Since ∥µN
t − µt∥1 ≤

√
|S| ∥µN

t − µt∥2, it follows that

E[dTV(µ
N
t − µt)] = E

[1
2

∑
s

|µN
t (s)− µ∗

t (s)|
]

=
1

2
E∥µ− µ′∥1 = O

( 1√
N

)
.

Proof of Lemma 6. The deviated empirical distribution is
given by

µ̃N
t (s) =

1

N

N∑
k=1

1s(s̃
k
t ) =

1

N
1s(s̃

1
t ) +

1

N

N∑
k=2

1s(s̃
k
t ).

Due to the decoupled dynamics, s̃kt follows the same distri-
bution as skt for k = 2, . . . , N . Then, the expected difference
between the deviated empirical distribution and the original
optimal mean field can be bounded as

E
∣∣∣ µ̃N

t (s)− µ∗
t (s)

∣∣∣
≤ E

∣∣∣ 1

N
1s(s̃

1
t )
∣∣∣+ E

∣∣∣ 1

N

N∑
k=2

1s(s̃
k
t )− µ∗

t (s)
∣∣∣

≤ 1

N
+ E

∣∣∣ 1

N − 1

N∑
k=2

1s(s̃
k
t )− µ∗

t (s)
∣∣∣ (29)

+ E
∣∣∣ 1

N(N − 1)

N∑
k=2

1s(s̃
k
t )
∣∣∣

≤ 1

N
+O

( 1√
N

)
+

1

N
= O

( 1√
N

)
. (30)

The second term in (29) corresponds to the scenario of N−1
agents all applying the optimal policy π∗. By Lemma 5, we
obtain the convergence rate. Finally, from (30), we have

E [dTV

(
µ̃N
t , µ∗

t

)
] =

1

2
E

∑
s∈S

|µ̃N
t (s)− µ∗

t (s)| = O
( 1√

N

)
.
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