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Abstract— In order to optimally steer the state of a stochastic
system to a desired value over a finite time horizon, a novel
approach based on the Stochastic Minimum Principle is pre-
sented, which enforces a constraint on the expectation of the
terminal state at all instances of time. In order to solve the
associated optimal control problem, we invoke a version of the
Stochastic Minimum Principle which we call the Terminally
Constrained Stochastic Minimum Principle (TC-SMP). For lin-
ear stochastic systems with quadratic costs, analytical solutions
to the adjoint equation of the TC-SMP are derived and are
explicitly represented in terms of controllability Gramians and
solutions of Riccati equations. Numerical examples are provided
to illustrate the results, and the performance of the TC-SMP
approach is compared to both penalty-based and covariance-
steering alternative approaches.

I. INTRODUCTION

In several engineering applications, it is desired to bring
a system from an initial configuration to a specific terminal
configuration. A classical example is balancing the upright
configuration of an inverted pendulum. A more complex
example is the vertical landing of a reusable rocket, e.g., the
booster rocket of SpaceX Falcon 9, which is required to come
to a full stop at an exact location on the landing platform.
If dynamic uncertainties are negligible, powerful theoretical
tools are available in the control theory literature, the most
notable being the Pontryagin Minimum Principle (MP) [1],
which determines the optimal input, among all controllers
that steering the state to the desired terminal value.

In the presence of a stochastic diffusion, these state
steering problems are more challenging and have been the
subject of a limited number of studies. More precisely, the
majority of studies assume linearity of the dynamics and a
quadratic form for the cost, so that the associated probability
distributions are Gaussian. In this case, and in the absence
of any additional state constraints, the dynamics of the mean
state process and the covariance state process are decoupled.
Within an infinite time horizon setting, the problem has been
formulated as the association of a steady-state distribution
with its mean being at the desired terminal location, and
a comprehensive study over the assignable covariances for
the infinite horizon problem is presented in [2]–[5]. For
linear stochastic systems over finite time horizons, a similar
philosophy is taken in both continuous time and discrete time
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settings [6]–[14]. The accommodation of input constraints
is considered in [10], and convex relaxations for linear
systems subject to chance constraints, which are probabilistic
constraints that impose a maximum probability of con-
straint violation, are studied in [12], [13]. Extensions of the
probability distribution assignment to nonlinear systems has
been presented for feedback-linearizable systems [15], and
implementation through iterative linearization is proposed in
[16].

A fundamental limit of the current methodologies based
on the assignment of terminal probability distributions is that
the studied probabilities are conditioned on the filtration at
the initial time. For linear systems, the information obtained
as time progresses is accommodated in a model predictive
control (MPC) based approach in [17]–[20]. However, as
proposed in this paper, the employment of the Stochastic
Minimum Principle (SMP) yields a natural accommodation
of filtration-adapted updates because the same adaptation
requirement must be provided for the adjoint process. In
other words, the optimal input expressed in terms of the
adjoint process is adapted to the current time filtration,
since the solution of the backward stochastic differential
equation (BSDE) for the adjoint process must remain adapted
to the same forward filtration. This important characteristic
provides an opportunity to impose terminal state constraints
at all times, as apposed to the current literature where con-
straints are imposed on probability distributions as viewed
at the initial time. In order to solve the associated problem,
we invoke the Stochastic Maximum Principle (SMP) pre-
sented in [21] and, in particular, the version with terminal
state constraints [21, Theorem 5], henceforth called the
Terminally Constrained Stochastic Minimum Principle (TC-
SMP). While, in general, obtaining numerical solutions to the
BSDEs of the adjoint process are computationally expensive,
for a class of linear stochastic systems with quadratic costs,
we derive analytical solutions to the adjoint equation in terms
of the system’s state transition matrix, its controllability
Gramian and the solution of a differential matrix Riccati
equation.

The organization of the paper is as follows. In Section II,
the steering problem for the general nonlinear case is for-
mulated, a representation form for the terminal state con-
straints is proposed, and the associated necessary optimality
conditions are presented in the form of the TC-SMP. The
specialization of the results to stochastic systems with linear
dynamics and quadratic cost is presented in Section III, and
analytical solutions to the TC-SMP are provided in terms
of the controllability Gramians and the solutions of Riccati
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equations. To illustrate the results, numerical examples are
studied in Section IV and the performance of the TC-SMP
approach is compared to both penalty-based approaches and
the covariance control methodology. Concluding remarks are
provided in Section V.

II. THE GENERAL NONLINEAR CASE

Let
(
Ω,F , {F t}tft=t0 ,P

)
be a filtered probability space

with F t being an increasing family of sub σ-algebras of
F such that F t0 contains all the P-null sets, and F tf = F
for a fixed terminal time tf < ∞. Consider the nonlinear
stochastic system governed by a controlled Itô differential
equation

dxs = f(s, xs, us)ds+ g(s, xs)dws, (1)

where xs ∈ Rn, us ∈ U ⊂ Rm are, respectively, the state
and the input values at instant s ∈ [t0, tf ], and w is a
standard k-dimensional Wiener process, such that ws ∈ Rk,
E[ws] = 0, and E[dwsdw

T
s ] =

√
dt Ik×k. In order to ensure

the existence and uniqueness of solutions, we assume that f
and g are smooth and bounded functions of their arguments.

Let us denote by [u] ≡ [u]
tf
t :=

{
us, s ∈ [t, tf ], us ∈ U :

Fs−adapted
}

a general control process, and denote by U the
set of all such inputs. In other words, [u] ∈ U whenever it is
a progressively measurable process over the interval [t, tf ],
taking values from the set U ⊂ Rm. We remark that the
underlying policy for the determination of the input process
[u] can take any form, as long as the policy remains causal,
that is, us does not depend on future values of the noise or
the state.

In this paper, we consider only the case with complete and
accurate observations of the state. Thus, for time instances t
and s within the interval [t0, tf ], and under the filtration F t,
the variable xs is treated as a deterministic variable whenever
s ≤ t, and is treated as a random variable whenever s > t.
We define the notation

E[u]
Ft [xs] := E

[
xs
∣∣F t; [u]

tf
t

]
≡ E

[
xs
∣∣F t; [u]st

]
, (2)

for the expected value of xs at s ∈ [t, tf ], under the filtration
F t and given the input process [u]

tf
t , where the last equality

(conditioning on [u]st instead of [u]
tf
t ) is a consequence of

the causality of the controlled process in (1).
In order for the state to be steered to a desired value µf ∈

Rn, we enforce the constraint

E[u]
Ft [xtf ] = µf , (3)

at all time instances t ∈ [t0, tf ].
Remark 2.1: A significant distinction of the proposed

problem formulation, in comparison to the covariance steer-
ing literature [2]–[14] for example, is that here the con-
straint (3) is enforced under all filtrations F t, t ∈ [t0, tf ],
whereas in [2]–[14], it is enforced only under the filtration at
t = t0, that is, E[u]

Ft0
[xtf ] = µf , and this terminal constraint

is accompanied by a constraint on the covariance at the initial
time, namely, cov[u]Ft0

[
xtf
]

= Σf , with Σf a desired positive
definite covariance matrix for the distribution of the terminal
state conditioned on the information at t0.

Whenever the class of controllers satisfying (3) is
nonempty, the performance of such [u] is evaluated by

J
(
t, xt, [u]

tf
t

)
:= E[u]

Ft

[∫ tf

t

`(xs, us)ds+ L
(
xtf
)]
. (4)

The objective of the optimal control problem is to find
[u∗] satisfying (3) such that the cost (4) is minimized.

In order to solve this optimal control problem, we invoke
the following result from [21].

Theorem 2.2: (Terminally-Constrained Stochastic Mini-
mum Principle (TC-SMP)) For the system (1), the optimal
input for the cost (4) subject to the constraint (3) is deter-
mined from

u∗s = argmin
u∈Rm

{
`(xs, u) + λTs f(xs, u)

}
, (5)

where the adjoint pair (λs,Λs), s ∈ [t, tf ] are governed by
the backward stochastic differential equation

dλs = −
(
∂f(x∗s, u

∗
s)

∂x
λs +

∂`(x∗s, u
∗
s)

∂x

)
ds+Λsdws, (6)

subject to the terminal condition

λtf = α
∂L(x∗tf )

∂x
+ β, (7)

where α ∈ R and β ∈ Rn are constants which are not
simultaneously zero. �

Proof: Please see [21, Theorem 5].

III. TC-SMP FOR LINEAR QUADRATIC PROBLEMS

In this section, we specialize the results of Theorem 2.2
to linear stochastic systems with quadratic cost, and provide
an analytical solution to the TC-SMP. To this end, let the
dynamics (1) be of the form

dxs =
(
Asxs +Bsus

)
ds+Dsdws, (8)

with A ∈ L∞([t0, tf ];Rn×n), B ∈ L∞([t0, tf ];Rn×m),
D ∈ L∞([t0, tf ];Rn×k), essentially bounded measurable
matrix functions of time.

For simplicity, we assume that the cost (4) is a quadratic
function of the input and the terminal state, that is,

J
(
t, xt, [u]

tf
t

)
:=

1

2
E[u]
Ft

[ ∫ tf

t

uTsRsusds

+ (xtf − µf )THf (xtf − µf )

]
, (9)

with R ∈ L∞([t0, tf ];Sm×m), Rs > 0, for all s ∈ [t0, tf ],
and Hf ∈ Sn×n, Hf ≥ 0, where Sm×m denotes the space
of m×m-dimensional symmetric matrices.

We assume that the system (As, Bs) is controllable1,
and that the system is noise controllable2, equivalently,
Im(Ds) ⊂ Im(Bs), for all s ∈ [t0, tf ], that is,

∀w ∈ Rk,∃u ∈ Rm s.t. Bsu = Dsw. (10)

The following theorem summarizes the main result of the
paper.

1Hence, the Gramian (13) is full rank.
2As a requirement for solvability of the Riccati equations (14) and (15).
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Theorem 3.1: For the system (8) and the cost (9) subject
to the constraint (3), the optimal input is determined by

u∗s = −R−1s BT
s Φ(tf , s)

T
[
G(t, tf )

]−1
(Φ(tf , t)xt − µf )

−R−1s BT
s Π(s; tf )

(
xs − Φ(s, t)xt

+ G(t, s)Φ(tf , s)
T
[
G(t, tf )

]−1(
Φ(tf , t)xt − µf

))
,

(11)

where Φ(s, t) ∈ Rn×n is the state transition matrix from t
to s for the system (8), which is the solution of

Φ̇ ≡ ∂Φ(s, t)

∂s
= AsΦ, Φ(t, t) = In×n, (12)

and where

G(τ, t) :=

∫ τ

t

Φ(τ, s)BsR
−1
s BT

s Φ(τ, s)Tds, (13)

is the controllability Gramian (see e.g., [22, Theorem 6.1])
over the horizon [t, τ ] ⊂ [t0, tf ], and Π(s; tf ) is the solution
of the following Riccati equation

Π̇s ≡
d

ds
Π(s; tf ) = ΠsBsR

−1
s BT

s Πs −ΠsAs −AT
sΠs,

(14)
subject to the terminal condition

Π(tf ; tf ) = Hf . (15)

�
Proof: For the brevity of notation, the time index s is

dropped for the matrices As, Bs, etc.
We first invoke (5) to obtain

u∗s = argmin
us∈Rm

{1

2
uTsRus + λTs

(
Axs +Bus

)}
= −R−1BTλs. (16)

Therefore, the joint dynamics of the (optimal) state process
and the adjoint process become

dxs = (Axs −BR−1BTλs)ds+Ddws, (17)

dλs = −ATλsds+ Λsdws, (18)

where the state dynamics (17) and the adjoint dynamics (18)
are, respectively, subject to the initial condition xt = x(t)
and the terminal conditions obtained from (7) as

λtf = αHf (xtf − µf ) + β. (19)

Defining now

x̄s = E[u∗]
Ft (xs), x̃s = xs − x̄s (20)

λ̄s := E[u∗]
Ft (λs), λ̃s := λs − λ̄s, (21)

the dynamics (17) and (18) and the associated initial and
terminal conditions are expressed in terms of the mean
processes

d x̄s = (Ax̄s −BR−1BTλ̄s)ds, (22)

d λ̄s = −ATλ̄sds, (23)

subject to the initial and terminal conditions

x̄t = xt, x̄tf
(3)
= µf , (24)

λ̄t = free, λ̄tf
(19)
=
(3)
β ≡ free, (25)

together with the error processes

d x̃s = (Ax̃s −BR−1BTλ̃s)ds+Ddws, (26)

d λ̃s = −ATλ̃sds+ Λsdws, (27)

with the initial and terminal conditions

x̃t = 0, x̃tf
(3)
= free, (28)

λ̃t = free, λ̃tf
(19)
= αHf x̃s. (29)

Since the dynamics (23) of λ̄ is decoupled from the
dynamics (22) of x̄, it yields that

λ̄s = Φ(t, s)Tλ̄t, (30)

whose substitution in (22) yields

x̄tf = Φ(tf , t)xt −
tf∫
t

Φ(tf , θ)BR
−1BTΦ(θ, t)Tλ̄tdθ

= Φ(tf , t)xt

−
[∫ tf

t

Φ(tf , θ)BR
−1BTΦ(tf , θ)

Tdθ

]
Φ(t, tf )Tλ̄t

= Φ(tf , t)xt − G(tf , t)Φ(t, tf )Tλ̄t. (31)

Therefore,

λ̄t = Φ(tf , t)
T [G(tf , t)]

−1
(Φ(tf , t)xt − µf ) , (32)

which, together with (30), yields

λ̄s = Φ(tf , s)
T [G(tf , t)]

−1
(Φ(tf , t)xt − µf ) . (33)

Furthermore, it can be easily verified that (26), (27), (28)
and (29) correspond to a classical LQG system for the cost

J̃
(
t, x̃t, [ũ]

)
:= E[ũ]

Ft

[ ∫ tf

t

1

2
ũTsRũsds

+
1

2
α(x̃tf − µf )THf (x̃tf − µf )

]
. (34)

Thus, α = 1 needs to hold for compliance with (9), and
by invoking the stochastic Riccati formalism (see, e.g., [23,
Chapter 6, Section 6]), we obtain

λ̃s = Π(s; tf )x̃s, (35)
Λs = Π(s; tf )D, (36)

resulting in the dynamics (14) and the terminal condition
(15). Moreover, substitution of x̃ from the definition (20),
yields

λ̃s = Π(s; tf )(xs − x̄s) = Π(s; tf )

(
xs − Φ(s, t)xt

+G(s, t)Φ(tf , s)
TΦ(tf , s)

TG(tf , t)
−1
(

Φ(tf , t)xt−µf
))

.

(37)

Hence, (11) is obtained with the substitution of λ̄s from
(33) and λ̃s from (37) into λs = λ̄s + λ̃s, and subsequently
into (16).
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IV. NUMERICAL EXAMPLES

In this section we provide a series of examples to demon-
strate the proposed approach and compare it with other
standard approaches in the literature.

Example 4.1: Consider the scalar case of a linear stochas-
tic system with the dynamics

dxs := (axs − bus)ds+ ddws, (38)

with a, b, d scalar constants, and consider the problem of
steering the state to the desired value µf ∈ R by enforcing

E[u]
Ft [xtf ] = µf , (3)

at all t ∈ [t0, tf ], with the cost

J
(
t, xt, [u]

tf
t

)
:=

1

2
E[u]
Ft

[ ∫ tf

t

r u2s ds+h(xtf−µf )2
]
. (39)

where r > 0 and h ∈ R≥0 \ {2ar/b2}3.
For this problem, we can analytically represent Φ, G and

Π as

Φ(s, t) = ea(s−t), (40)

G(t, τ) =
b2

2a
e2a tf

(
e−2a t − e−2a τ

)
, (41)

Π(s; tf ) =
2ar

b2
(

1− h
h− 2ar

b2
e

b2

r (tf−s)
) . (42)

and, therefore, the optimal input (11) becomes

u∗s =
−2a

br
(
e2a(tf−t) − 1

)ea(tf−s) (ea(tf−t)xt − µf)
− 2a

b
(

1− h
h− 2ar

b2
e

b2

r (tf−s)
)(xs − ea(s−t)xt

+ ea(tf−s)
e−2at − e−2as

e−2at − e−2atf
(
ea(tf−t)xt − µf

))
. (43)

Let a = b = d = r = h = 1, and the time horizon be
[t0, tf ] = [0, 1]. For the steering towards the desired stated
µf = 2, from the initial condition x0 = −4, the optimal input
satisfying (3) for all t ∈ [0, 1], and the associated trajectories
for 50 sample paths are illustrated in Figure 1. As can be
seen from the figure, all trajectories are almost surely driven
to the required terminal state at t = tf .

In order to illustrate the role of the constraint (3), the as-
sociated trajectories and inputs of the unconstrained (without
the constraint (3)) linear quadratic system with the dynamics
(38) and the cost (39) with the terminal cost 1

2 (xtf−µf )2 are
displayed in Figure 2. It can be observed from these sample
paths that neither the expected value of xtf , nor almost any
of its realizations achieve the requirement µf = 2. While
it is possible to push trajectories closer to µf by increasing
the terminal cost (i.e., by selecting larger values for h), the
inherent inability of such penalty-based approaches to meet
the constraint exactly is quite obvious, even from this simple
example.

3The exclusion of this value, which occurs only if a > 0, is due to the
appearance of h− 2ar/b2 as a denominator in (43).

It is also worth comparing the results of TC-SMP with the
covariance steering methodology (e.g., [6], [7]). By defining
µs := E[u]

Ft0
[xs] and σs := E[u]

Ft0
[(xs − µs)

2] and by
considering the linear feedback law us = ksxs + vs, we
obtain

µ̇ = (a+ b ks)µs + b vs, (44)

σ̇ = 2 (a+ b ks)σs + d2. (45)

For the cost we have, accordingly, that

J ′
(
t0, x0, [u]

tf
t0

)
:=

1

2
E[u]
Ft0

[ ∫ tf

t0

r u2s ds

]
=
r

2
E[u]
Ft0

[ ∫ tf

t0

(ksxs + vs)
2ds

]
=
r

2

∫ tf

t0

(ksµs + vs)
2ds+

r

2

∫ tf

t0

K2
sσ

2
s ds., (46)

The associated covariance steering problem is to find ks and
vs such that µ0 = x0, µtf = µf , σ0 = 0, σtf = σf ,
where σf is a desired terminal state provided in the problem
statement. For x0 = −4, µf = 2 and σf = 1, which
is equivalent to assigning the normal distribution N (2, 1)
as the terminal state distribution under the filtration F t0 ,
the associated optimal trajectories and inputs for 50 sample
paths are displayed in Figure 3. As seen from this figure, the
trajectories meet the covariance constraint, but have a larger
spread around the final mean value, as expected from the
problem formulation.

Fig. 1: The implementation of the Terminally Constrained
Stochastic Minimum Principle (TC-SMP) on the system in
Example 4.1.

Example 4.2: Consider the system governed by

dxs =

([
0 1
1 2

][
x
(1)
s

x
(2)
s

]
+

[
0
1

]
us

)
ds+

[
0
1

]
dws,

(47)
over the time horizon [t0, tf ] = [0, 1], starting from the
initial condition x0 = [1, 1]T, and steered towards the desired
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Fig. 2: The implementation of a naı̈ve approach in attempting
to reach the target via the terminal cost 1

2 (xtf − µf )2.

Fig. 3: The implementation of the Covariance Control
methodology, assigning the normal distribution N (2, 1) to
the terminal state.

terminal state by enforcing

E[u]
Ft [x1] =

[
−1
−1

]
, (48)

at all t ∈ [0, 1], and consider the associated optimal control
problem with the cost

J
(
t, xt, [u]

)
:= E[u]

Ft

[ ∫ tf

t

1

2
u2s ds+

1

2

∥∥xtf − µf∥∥2 ]. (49)

The implementation of the TC-SMP for 50 Sample paths
are illustrated in Figure 4.

Example 4.3: Consider a similar system as in Example 4.2
but with two dimensional input and noise processes, i.e.,

dxs =

([
0 1
1 2

][
x
(1)
s

x
(2)
s

]
+

[
1 0.2

0.5 1

][
u
(1)
s

u
(2)
s

])
ds

+

[
0.2
1

]
dws, (50)

Fig. 4: The implementation of the Terminally Constrained
Stochastic Minimum Principle (TC-SMP) on the system in
Example 4.2.

over the time horizon [t0, tf ] = [0, 1], starting from the
initial condition x0 = [1, 1]T, and steered towards the desired
terminal state by enforcing

E[u]
Ft [x1] =

[
−1
−1

]
, (51)

at all t ∈ [0, 1], and consider the associated optimal control
problem with the cost

J
(
t, xt, [u]

)
:= E[u]

Ft

[ ∫ tf

t

1

2
‖us‖2 ds+

1

2

∥∥xtf − µf∥∥2 ].
(52)

The resulting trajectories from the implementation of the
TC-SMP on this system for 50 sample paths are illustrated
in Figure 5. Again, it is shown that the TC-SMP drives all
trajectory realizations to the final desired state.

V. CONCLUDING REMARKS

A new formulation of the state steering problem for
stochastic systems is proposed. The formulation hinges on
enforcing the terminal state constraint under the problem
filtrations at every instance of time, and the associated
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Fig. 5: The implementation of the Terminally Constrained
Stochastic Minimum Principle (TC-SMP) on the system in
Example 4.3.

solution methodology is based on the Terminally Constrained
Stochastic Minimum Principle (TC-SMP). The solution con-
sists of a coupled set of forward/backward stochastic dif-
ferential equations. For the case of linear systems with
quadratic costs, analytical expressions for the optimal inputs
are provided in terms of the system’s state transition matrix,
its controllability Gramian and the solution of a Riccati
equation. Numerical examples demonstrate that the TC-
SMP performs successfully in terms of steering of the state
towards the desired location at the expense of increased
control effort at the final time. Future work includes the
development of numerical algorithms for the solution of the
general nonlinear TC-SMP, and the extension of the theory
to stochastic hybrid systems.
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